Azotemia

Last updated
Azotemia
Specialty Nephrology

Azotemia (azot, "nitrogen" + -emia , "blood condition") is a medical condition characterized by abnormally high levels of nitrogen-containing compounds (such as urea, creatinine, various body waste compounds, and other nitrogen-rich compounds) in the blood. It is largely related to insufficient or dysfunctional filtering of blood by the kidneys. [1] It can lead to uremia and acute kidney injury (kidney failure) if not controlled.

Contents

Types

Azotemia has three classifications, depending on its causative origin: prerenal azotemia, renal azotemia, and postrenal azotemia. [2]

Measurements of urea and creatinine (Cr) in the blood are used to assess renal function. For historical reasons, the lab test measuring urea is known as "blood urea nitrogen" (BUN) in the US. The BUN:Cr ratio is a useful measure in determining the type of azotemia and will be discussed in each section below. A normal BUN:Cr is equal to 15. [3]

Prerenal azotemia

Prerenal azotemia is caused by a decrease in blood flow (hypoperfusion) to the kidneys. However, there is no inherent kidney disease. It can occur following hemorrhage, shock, volume depletion, congestive heart failure, adrenal insufficiency, and narrowing of the renal artery among other things. [1]

The BUN:Cr in prerenal azotemia is greater than 20. The reason for this lies in the mechanism of filtration of urea and creatinine. Renal Plasma Flow (RPF) is decreased due to hypoperfusion which results in a proportional decrease in Glomerular Filtration Rate (GFR). In turn, the decreased flow and pressure to the kidney will be sensed by baroreceptors in the Juxtaglomerular (JG) Cells of the afferent arteriole. If the decrease in blood pressure is systemic (rather than occlusion of the renal artery) baroreceptors in the carotid sinus and aortic arch will be stimulated. This leads to sympathetic nerve activation, resulting in renin secretion through β 1 -receptors. Constriction of the afferent arterioles causes a decrease in the intraglomerular pressure, reducing GFR proportionally. Renin is the main effector of the juxtaglomerular baroreceptors. Renin is secreted from granules in the JG cells, and once in the blood stream, it acts as a protease to convert angiotensinogen to angiotensin I, which is converted by angiotensin converting enzyme, to angiotensin II, which, in turn, stimulates aldosterone release. Increased aldosterone levels results in salt and water absorption in the distal collecting tubule. [4]

A decrease in volume or pressure is a nonosmotic stimulus for antidiuretic hormone production in the hypothalamus, which exerts its effect in the medullary collecting duct for water reabsorption. Through unknown mechanisms, activation of the sympathetic nervous system leads to enhanced proximal tubular reabsorption of salt and water, as well as urea (BUN), calcium, uric acid, and bicarbonate. The net result of these 4 mechanisms of salt and water retention is decreased output and decreased urinary excretion of sodium (< 20 mEq/L). The increased reabsorption of Na leads to increased water and urea reabsorption from the proximal tubules of the kidney back into the blood. In contrast, creatinine is actually secreted in the proximal tubule. This generally leads to a BUN:Cr ratio > 20 and a fractional excretion of Na of < 1% and an elevated urine osmolarity. [5]

Primary renal azotemia

Renal azotemia (acute kidney failure) typically leads to uremia. It is an intrinsic disease of the kidney, generally the result of kidney parenchymal damage. Causes include kidney failure, glomerulonephritis, acute tubular necrosis, or other kidney disease. [3]

The BUN:Cr in renal azotemia is less than 15.[ citation needed ] In cases of kidney disease, glomerular filtration rate decreases, so nothing gets filtered as well as it normally would. However, in addition to not being normally filtered, what urea does get filtered is not reabsorbed by the proximal tubule as it normally would be. This results in lower levels of urea in the blood and higher levels of urea in the urine as compared to creatinine. Creatinine filtration decreases, leading to a higher amount of creatinine in the blood. Third spacing of fluids such as peritonitis, osmotic diuresis, or low aldosterone states such as Addison's disease all elevate urea. [3]

Postrenal azotemia

Blockage of urine flow in an area below the kidneys results in postrenal azotemia. It can be caused by congenital abnormalities such as vesicoureteral reflux, blockage of the ureters by kidney stones, pregnancy, compression of the ureters by cancer, prostatic hyperplasia, or blockage of the urethra by kidney or bladder stones. [1] Like in prerenal azotemia, there is no inherent renal disease. The increased resistance to urine flow can cause back up into the kidneys, leading to hydronephrosis. [3]

The BUN:Cr in postrenal azotemia is initially >15. The increased nephron tubular pressure (due to fluid back-up) causes increased reabsorption of urea, elevating it abnormally relative to creatinine. [3] Persistent obstruction damages the tubular epithelium over time, and renal azotemia will result with a decreased BUN:Cr ratio. [6]

Signs and symptoms

A urinalysis will typically show a decreased urine sodium level, a high urine creatinine-to-serum creatinine ratio, a high urine urea-to-serum urea ratio, and concentrated urine (determined by osmolality and specific gravity). None of these is particularly useful in diagnosis.[ citation needed ]

In pre-renal and post-renal azotemias, elevation of urea exceeds that of the creatinine (i.e., BUN>12*creatinine). This is because urea is readily reabsorbed by the kidneys while creatinine is not. In congestive heart failure (a cause of pre-renal azotemia) or any other condition that causes poor perfusion of kidneys, the sluggish flow of glomerular filtrate results in excessive absorption of urea and elevation of its value in blood. Creatinine, however, is not absorbable and therefore does not rise significantly. Stasis of urine in post-renal azotemia has the same effect.[ citation needed ]

Treatment

Prompt treatment of some causes of azotemia can result in restoration of kidney function; delayed treatment may result in permanent loss of renal function. Treatment may include hemodialysis or peritoneal dialysis, medications to increase cardiac output and increase blood pressure, and the treatment of the condition that caused the azotemia.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Kidney</span> Organ that filters blood and produces urine

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

<span class="mw-page-title-main">Creatinine</span> Breakdown product of creatine phosphate

Creatinine is a breakdown product of creatine phosphate from muscle and protein metabolism. It is released at a constant rate by the body.

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

<span class="mw-page-title-main">Renin–angiotensin system</span> Hormone system

The renin–angiotensin system (RAS), or renin–angiotensin–aldosterone system (RAAS), is a hormone system that regulates blood pressure, fluid and electrolyte balance, and systemic vascular resistance.

<span class="mw-page-title-main">Angiotensin</span> Group of peptide hormones in mammals

Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adrenal cortex to promote sodium retention by the kidneys.

<span class="mw-page-title-main">Aldosterone</span> Mineralocorticoid steroid hormone

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure, and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

<span class="mw-page-title-main">Uremia</span> Type of kidney disease, urea in the blood

Uremia is the term for high levels of urea in the blood. Urea is one of the primary components of urine. It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which would be normally excreted in the urine. Uremic syndrome can be defined as the terminal clinical manifestation of kidney failure. It is the signs, symptoms and results from laboratory tests which result from inadequate excretory, regulatory, and endocrine function of the kidneys. Both uremia and uremic syndrome have been used interchangeably to denote a very high plasma urea concentration that is the result of renal failure. The former denotation will be used for the rest of the article.

<span class="mw-page-title-main">Glomerular filtration rate</span> Renal function test

Renal functions include maintaining an acid–base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearing toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

<span class="mw-page-title-main">Renal physiology</span> Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

<span class="mw-page-title-main">Assessment of kidney function</span> Ways of assessing the function of the kidneys

Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging.

<span class="mw-page-title-main">Macula densa</span> A region of juxtaglomerular apparatus in nephron of kidney

In the kidney, the macula densa is an area of closely packed specialized cells lining the wall of the thick ascending limb of henle, where the distal tubule touches the glomerulus.

<span class="mw-page-title-main">Loop diuretic</span> Diuretics that act at the ascending limb of the loop of Henle in the kidney

Loop diuretics are diuretics that act on the Na-K-Cl cotransporter along the thick ascending limb of the loop of Henle in nephrons of the kidneys. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

<span class="mw-page-title-main">Hyperaldosteronism</span> Hormonal disorder

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).

<span class="mw-page-title-main">Bartter syndrome</span> Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

<span class="mw-page-title-main">Efferent arteriole</span> Blood vessel carrying blood out away from glomerulus

The efferent arterioles are blood vessels that are part of the urinary tract of organisms. Efferent means "outgoing", in this case meaning carrying blood out away from the glomerulus. The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that has already been filtered. They play an important role in maintaining the glomerular filtration rate despite fluctuations in blood pressure.

<span class="mw-page-title-main">Reabsorption</span>

In renal physiology, reabsorption or tubular reabsorption is the process by which the nephron removes water and solutes from the tubular fluid (pre-urine) and returns them to the circulating blood. It is called reabsorption (and not absorption) because these substances have already been absorbed once (particularly in the intestines) and the body is reclaiming them from a postglomerular fluid stream that is on its way to becoming urine (that is, they will soon be lost to the urine unless they are reabsorbed from the tubule into the peritubular capillaries. This happens as a result of sodium transport from the lumen into the blood by the Na+/K+ATPase in the basolateral membrane of the epithelial cells. Thus, the glomerular filtrate becomes more concentrated, which is one of the steps in forming urine. Nephrons are divided into five segments, with different segments responsible for reabsorbing different substances. Reabsorption allows many useful solutes (primarily glucose and amino acids), salts and water that have passed through Bowman's capsule, to return to the circulation. These solutes are reabsorbed isotonically, in that the osmotic potential of the fluid leaving the proximal convoluted tubule is the same as that of the initial glomerular filtrate. However, glucose, amino acids, inorganic phosphate, and some other solutes are reabsorbed via secondary active transport through cotransport channels driven by the sodium gradient.

In the physiology of the kidney, tubuloglomerular feedback (TGF) is a feedback system inside the kidneys. Within each nephron, information from the renal tubules is signaled to the glomerulus. Tubuloglomerular feedback is one of several mechanisms the kidney uses to regulate glomerular filtration rate (GFR). It involves the concept of purinergic signaling, in which an increased distal tubular sodium chloride concentration causes a basolateral release of adenosine from the macula densa cells. This initiates a cascade of events that ultimately brings GFR to an appropriate level.

In medicine, the urea-to-creatinine ratio (UCR), known in the United States as BUN-to-creatinine ratio, is the ratio of the blood levels of urea (BUN) (mmol/L) and creatinine (Cr) (μmol/L). BUN only reflects the nitrogen content of urea and urea measurement reflects the whole of the molecule, urea is just over twice BUN. In the United States, both quantities are given in mg/dL The ratio may be used to determine the cause of acute kidney injury or dehydration.

The fractional excretion of sodium (FENa) is the percentage of the sodium filtered by the kidney which is excreted in the urine. It is measured in terms of plasma and urine sodium, rather than by the interpretation of urinary sodium concentration alone, as urinary sodium concentrations can vary with water reabsorption. Therefore, the urinary and plasma concentrations of sodium must be compared to get an accurate picture of kidney clearance. In clinical use, the fractional excretion of sodium can be calculated as part of the evaluation of acute kidney failure in order to determine if hypovolemia or decreased effective circulating plasma volume is a contributor to the kidney failure.

Sickle cell nephropathy is a type of nephropathy associated with sickle cell disease which causes kidney complications as a result of sickling of red blood cells in the small blood vessels. The hypertonic and relatively hypoxic environment of the renal medulla, coupled with the slow blood flow in the vasa recta, favors sickling of red blood cells, with resultant local infarction. Functional tubule defects in patients with sickle cell disease are likely the result of partial ischemic injury to the renal tubules.

References

  1. 1 2 3 Kumar, Vinay; Fausto, Nelson; Fausto, Nelso; Robbins, Stanley L.; Abbas, Abul K.; Cotran, Ramzi S. (2005). Robbins and Cotran Pathologic Basis of Disease (7th ed.). Philadelphia, Pa.: Elsevier Saunders. pp. 960, 1012. ISBN   0-7216-0187-1.
  2. Tyagi, Alka; Aeddula, Narothama R. (2022), "Azotemia", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   30844172 , retrieved 2023-03-02
  3. 1 2 3 4 5 Goljan, Edward F. (2007). Rapid Review Pathology (2nd ed.). Mosby. pp. 396–398. ISBN   978-0-323-04414-1.
  4. Blantz, Roland C. (1998-02-01). "Pathophysiology of pre-renal azotemia". Kidney International. 53 (2): 512–523. doi: 10.1046/j.1523-1755.2003_t01-1-00784.x . ISSN   0085-2538. PMID   9461116.
  5. Tyagi, Alka; Aeddula, Narothama R. (2022), "Azotemia", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   30844172 , retrieved 2022-06-15
  6. "Types of Azotemia". AyurvedicCure.com. Archived from the original on 2016-03-16. Retrieved 2010-10-20.