Hemoglobin subunit alpha

Last updated
HBA1
Protein HBA1 PDB 1a00.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases HBA1 , HBA-T3, HBH, hemoglobin subunit alpha 1, METHBA, ECYT7
External IDs OMIM: 141800 MGI: 96015 HomoloGene: 469 GeneCards: HBA1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000558

NM_008218

RefSeq (protein)

NP_000508
NP_000508.1
NP_000549.1

NP_001077424

Location (UCSC) Chr 16: 0.18 – 0.18 Mb Chr 11: 32.23 – 32.23 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Hemoglobin subunit alpha, Hemoglobin, alpha 1, [5] is a hemoglobin protein that in humans is encoded by the HBA1 gene. [6]

Gene

The human alpha globin gene cluster located on chromosome 16 spans about 30 kb and includes seven loci: 5'- zeta - pseudozeta - mu - pseudoalpha-1 - alpha-2 - alpha-1 - theta - 3'. The alpha-2 (HBA2) and alpha-1 (HBA1; this gene) coding sequences are identical. These genes differ slightly over the 5' untranslated regions and the introns, but they differ significantly over the 3' untranslated regions. [6]

Protein

Two alpha chains plus two beta chains constitute HbA, which in normal adult life accounts for about 97% of the total hemoglobin; alpha chains combine with delta chains to constitute HbA-2, which with fetal hemoglobin (HbF), composed of alpha and gamma chains, make up the remaining 3% of adult hemoglobin. [6]

Clinical significance

Alpha thalassemias result from deletions of each of the alpha genes as well as deletions of both HBA2 and HBA1; some nondeletion alpha thalassemias have also been reported. [6]

Interactions

Hemoglobin subunit alpha has been shown to interact with hemoglobin subunit beta (HBB). [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Hemoglobin</span> Metalloprotein that binds with oxygen

Hemoglobin is a protein containing iron that facilitates the transport of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the exception of the fish family Channichthyidae. Hemoglobin in the blood carries oxygen from the respiratory organs to the other tissues of the body, where it releases the oxygen to enable aerobic respiration which powers the animal's metabolism. A healthy human has 12 to 20 grams of hemoglobin in every 100 mL of blood. Hemoglobin is a metalloprotein, a chromoprotein, and globulin.

<span class="mw-page-title-main">Thalassemia</span> Family of inherited blood disorders

Thalassemias are inherited blood disorders that result in abnormal hemoglobin. Symptoms depend on the type of thalassemia and can vary from none to severe. Often there is mild to severe anemia as thalassemia can affect the production of red blood cells and also affect how long the red blood cells live. Symptoms of anemia include feeling tired and having pale skin. Other symptoms of thalassemia include bone problems, an enlarged spleen, yellowish skin, pulmonary hypertension, and dark urine. Slow growth may occur in children. Symptoms and presentations of thalassemia can change over time. Thalassemia is also known as Cooley's anemia or Mediterranean anemia.

<span class="mw-page-title-main">Hemoglobin A</span> Normal human hemoglobin in adults

Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α2β2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. Hemoglobin A is the most common adult form of hemoglobin and exists as a tetramer containing two alpha subunits and two beta subunits (α2β2). Hemoglobin A2 (HbA2) is a less common adult form of hemoglobin and is composed of two alpha and two delta-globin subunits. This hemoglobin makes up 1-3% of hemoglobin in adults.

Hemoglobin A2 (HbA2) is a normal variant of hemoglobin A that consists of two alpha and two delta chains (α2δ2) and is found at low levels in normal human blood. Hemoglobin A2 may be increased in beta thalassemia or in people who are heterozygous for the beta thalassemia gene.

<span class="mw-page-title-main">Alpha-thalassemia</span> Thalassemia involving the genes HBA1and HBA2 hemoglobin genes

Alpha-thalassemia is a form of thalassemia involving the genes HBA1 and HBA2. Thalassemias are a group of inherited blood conditions which result in the impaired production of hemoglobin, the molecule that carries oxygen in the blood. Normal hemoglobin consists of two alpha chains and two beta chains; in alpha-thalassemia, there is a quantitative decrease in the amount of alpha chains, resulting in fewer normal hemoglobin molecules. Furthermore, alpha-thalassemia leads to the production of unstable beta globin molecules which cause increased red blood cell destruction. The degree of impairment is based on which clinical phenotype is present.

<span class="mw-page-title-main">Beta thalassemia</span> Thalassemia characterized by the reduced or absent synthesis of the beta globin chains of hemoglobin

Beta thalassemias are a group of inherited blood disorders. They are forms of thalassemia caused by reduced or absent synthesis of the beta chains of hemoglobin that result in variable outcomes ranging from severe anemia to clinically asymptomatic individuals. Global annual incidence is estimated at one in 100,000. Beta thalassemias occur due to malfunctions in the hemoglobin subunit beta or HBB. The severity of the disease depends on the nature of the mutation.

<span class="mw-page-title-main">Hemoglobin subunit beta</span> Mammalian protein found in Homo sapiens

Hemoglobin subunit beta is a globin protein, coded for by the HBB gene, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, hemoglobin A (HbA). It is 147 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

<span class="mw-page-title-main">Hemoglobin variants</span> Forms of hemoglobin caused by variations in genetics

Hemoglobin variants are different types of hemoglobin molecules, by different combinations of its subunits and/or mutations thereof. Hemoglobin variants are a part of the normal embryonic and fetal development. They may also be pathologic mutant forms of hemoglobin in a population, caused by variations in genetics. Some well-known hemoglobin variants, such as sickle-cell anemia, are responsible for diseases and are considered hemoglobinopathies. Other variants cause no detectable pathology, and are thus considered non-pathological variants.

Hemoglobin Barts, abbreviated Hb Barts, is an abnormal type of hemoglobin that consists of four gamma globins. It is moderately insoluble, and therefore accumulates in the red blood cells. Hb Barts has an extremely high affinity for oxygen, so it cannot release oxygen to the tissue. Therefore, this makes it an inefficient oxygen carrier. As an embryo develops, it begins to produce alpha-globins at weeks 5–6 of development. When both of the HBA1 and HBA2 genes which code for alpha globins becomes dysfunctional, the affected fetuses will have difficulty in synthesizing a functional hemoglobin. As a result, gamma chains will accumulate and form four gamma globins. These gamma globins bind to form hemoglobin Barts. It is produced in the disease alpha-thalassemia and in the most severe of cases, it is the only form of hemoglobin in circulation. In this situation, a fetus will develop hydrops fetalis and normally die before or shortly after birth, unless intrauterine blood transfusion is performed.

<span class="mw-page-title-main">HBG2</span>

Hemoglobin subunit gamma-2 is a protein that in humans is encoded by the HBG2 gene.

<span class="mw-page-title-main">HBD</span> Mammalian protein found in Homo sapiens

Hemoglobin subunit delta is a protein that in humans is encoded by the HBD gene.

<span class="mw-page-title-main">HBG1</span>

Hemoglobin subunit gamma-1 is a protein that in humans is encoded by the HBG1 gene.

<span class="mw-page-title-main">HBE1</span>

Hemoglobin subunit epsilon is a protein that in humans is encoded by the HBE1 gene.

<span class="mw-page-title-main">Hemoglobin subunit zeta</span> Mammalian protein found in Homo sapiens

Hemoglobin subunit zeta is a protein that in humans is encoded by the HBZ gene.

<span class="mw-page-title-main">HBAP1</span> Pseudogene in the species Homo sapiens

Hemoglobin, alpha pseudogene 1, also known as HBAP1, is a human gene.

<span class="mw-page-title-main">Delta-beta thalassemia</span> Medical condition

Delta-beta thalassemia is a rare form of thalassemia in which there is a reduced production of hemoglobin subunit delta and hemoglobin subunit beta and raised levels of hemoglobin subunit gamma. It is an autosomal recessive disorder.

<span class="mw-page-title-main">Hemoglobin, alpha 2</span> Mammalian protein found in Homo sapiens

Hemoglobin, alpha 2 also known as HBA2 is a gene that in humans codes for the alpha globin chain of hemoglobin.

<span class="mw-page-title-main">Hemoglobin Lepore syndrome</span> Medical condition

Hemoglobin Lepore syndrome is typically an asymptomatic hemoglobinopathy, which is caused by an autosomal recessive genetic mutation. The Hb Lepore variant, consisting of two normal alpha globin chains (HBA) and two delta-beta globin fusion chains which occurs due to a "crossover" between the delta (HBD) and beta globin (HBB) gene loci during meiosis and was first identified in the Lepore family, an Italian-American family, in 1958. There are three varieties of Hb Lepore, Washington, Baltimore and Hollandia. All three varieties show similar electrophoretic and chromatographic properties and hematological findings bear close resemblance to those of the beta-thalassemia trait; a blood disorder that reduces the production of the iron-containing protein hemoglobin which carries oxygen to cells and which may cause anemia.

Hemoglobin H disease, also called alpha-thalassemia intermedia, is a disease affecting hemoglobin, the oxygen carrying molecule within red blood cells. It is a form of Alpha-thalassemia which most commonly occurs due to deletion of 3 out of 4 of the α-globin genes.

<span class="mw-page-title-main">Hemoglobin M disease</span> Medical condition

Hemoglobin M disease is a rare form of hemoglobinopathy, characterized by the presence of hemoglobin M (HbM) and elevated methemoglobin (metHb) level in blood. HbM is an altered form of hemoglobin (Hb) due to point mutation occurring in globin-encoding genes, mostly involving tyrosine substitution for proximal (F8) or distal (E7) histidine residues. HbM variants are inherited as autosomal dominant disorders and have altered oxygen affinity. The pathophysiology of hemoglobin M disease involves heme iron autoxidation promoted by heme pocket structural alteration.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000206172 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000069919 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "HBA1 gene: MedlinePlus Genetics".
  6. 1 2 3 4 "Entrez Gene: HBA1 hemoglobin, alpha 1".
  7. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl: 11858/00-001M-0000-0010-8592-0 . PMID   16169070. S2CID   8235923.
  8. Shaanan B (November 1983). "Structure of human oxyhaemoglobin at 2.1 A resolution". J. Mol. Biol. 171 (1): 31–59. doi:10.1016/S0022-2836(83)80313-1. PMID   6644819.

Further reading