Sarcalumenin

Last updated
SRL
Identifiers
Aliases SRL , entrez:6345, sarcalumenin, SAR
External IDs OMIM: 604992 MGI: 2146620 HomoloGene: 45500 GeneCards: SRL
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001098814
NM_001323667
NM_001323668

NM_175347
NM_001347162
NM_001361474

RefSeq (protein)

NP_001092284
NP_001310596
NP_001310597

NP_001334091
NP_780556
NP_001348403

Location (UCSC) Chr 16: 4.19 – 4.24 Mb Chr 16: 4.3 – 4.36 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sarcalumenin is a protein that in humans is encoded by the SRL gene. [5] [6]

Sarcalumenin is a calcium-binding protein that can be found in the sarcoplasmic reticulum of striated muscle. [7] Sarcalumenin is partially responsible for calcium buffering in the lumen of the sarcoplasmic reticulum and helps out calcium pump proteins. [8] Additionally, sarcalumenin is necessary for keeping a normal sinus rhythm during both aerobic and anaerobic exercise activity. [7] Sarcalumenin is a calcium-binding glycoprotein composed of 473 acidic amino acids with a molecular weight of 160 KDa. Together along with other luminal calcium buffer proteins, sarcalumenin plays an important role in regulation of calcium uptake and release during excitation-contraction coupling (ECC) in muscle fibers.

Related Research Articles

<span class="mw-page-title-main">Sarcoplasmic reticulum</span> Menbrane-bound structure in muscle cells for storing calcium

The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.

SERCA, or sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, or SR Ca2+-ATPase, is a calcium ATPase-type P-ATPase. Its major function is to transport calcium from the cytosol into the sarcoplasmic reticulum.

<span class="mw-page-title-main">Muscle contraction</span> Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

<span class="mw-page-title-main">Phospholamban</span> Mammalian protein found in Homo sapiens

Phospholamban, also known as PLN or PLB, is a micropeptide protein that in humans is encoded by the PLN gene. Phospholamban is a 52-amino acid integral membrane protein that regulates the calcium (Ca2+) pump in cardiac muscle cells.

<span class="mw-page-title-main">Calsequestrin</span> Calcium-binding protein

Calsequestrin is a calcium-binding protein that acts as a calcium buffer within the sarcoplasmic reticulum. The protein helps hold calcium in the cisterna of the sarcoplasmic reticulum after a muscle contraction, even though the concentration of calcium in the sarcoplasmic reticulum is much higher than in the cytosol. It also helps the sarcoplasmic reticulum store an extraordinarily high amount of calcium ions. Each molecule of calsequestrin can bind 18 to 50 Ca2+ ions. Sequence analysis has suggested that calcium is not bound in distinct pockets via EF-hand motifs, but rather via presentation of a charged protein surface. Two forms of calsequestrin have been identified. The cardiac form Calsequestrin-2 (CASQ2) is present in cardiac and slow skeletal muscle and the fast skeletal form Calsequestrin-1(CASQ1) is found in fast skeletal muscle. The release of calsequestrin-bound calcium (through a calcium release channel) triggers muscle contraction. The active protein is not highly structured, more than 50% of it adopting a random coil conformation. When calcium binds there is a structural change whereby the alpha-helical content of the protein increases from 3 to 11%. Both forms of calsequestrin are phosphorylated by casein kinase 2, but the cardiac form is phosphorylated more rapidly and to a higher degree. Calsequestrin is also secreted in the gut where it deprives bacteria of calcium ions..

<span class="mw-page-title-main">Calmodulin 1</span> Protein-coding gene in the species Homo sapiens

Calmodulin 1 is a protein in humans that is encoded by the CALM1 gene.

<span class="mw-page-title-main">Ryanodine receptor 2</span> Transport protein and coding gene in humans

Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.

<span class="mw-page-title-main">CALM2</span> Protein-coding gene in the species Homo sapiens

Calmodulin 2 is a protein that in humans is encoded by the CALM2 gene. A member of the calmodulin family of signaling molecules, it is an intermediary between calcium ions, which act as a second messenger, and many intracellular processes, such as the contraction of cardiac muscle.

<span class="mw-page-title-main">S100-A1</span> Protein-coding gene in the species Homo sapiens

Protein S100-A1, also known as S100 calcium-binding protein A1 is a protein which in humans is encoded by the S100A1 gene. S100A1 is highly expressed in cardiac and skeletal muscle, and localizes to Z-discs and sarcoplasmic reticulum. S100A1 has shown promise as an effective candidate for gene therapy to treat post-myocardially infarcted cardiac tissue.

<span class="mw-page-title-main">ATP2A1</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) also known as Calcium pump 1, is an enzyme that in humans is encoded by the ATP2A1 gene.

Ca<sub>v</sub>1.1 Mammalian protein found in Homo sapiens

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor.

<span class="mw-page-title-main">Obscurin</span> Protein-coding gene in the species Homo sapiens

Obscurin is a protein that in humans is encoded by the OBSCN gene. Obscurin belongs to the family of giant sarcomeric signaling proteins that includes titin and nebulin. Obscurin is expressed in cardiac and skeletal muscle, and plays a role in the organization of myofibrils during sarcomere assembly. A mutation in the OBSCN gene has been associated with hypertrophic cardiomyopathy and altered obscurin protein properties have been associated with other muscle diseases.

<span class="mw-page-title-main">Triadin</span> Protein-coding gene in humans

Triadin, also known as TRDN, is a human gene associated with the release of calcium ions from the sarcoplasmic reticulum triggering muscular contraction through calcium-induced calcium release. Triadin is a multiprotein family, arising from different processing of the TRDN gene on chromosome 6. It is a transmembrane protein on the sarcoplasmic reticulum due to a well defined hydrophobic section and it forms a quaternary complex with the cardiac ryanodine receptor (RYR2), calsequestrin (CASQ2) and junctin proteins. The luminal (inner compartment of the sarcoplasmic reticulum) section of Triadin has areas of highly charged amino acid residues that act as luminal Ca2+ receptors. Triadin is also able to sense luminal Ca2+ concentrations by mediating interactions between RYR2 and CASQ2. Triadin has several different forms; Trisk 95 and Trisk 51, which are expressed in skeletal muscle, and Trisk 32 (CT1), which is mainly expressed in cardiac muscle.

<span class="mw-page-title-main">HRC (gene)</span> Protein-coding gene in the species Homo sapiens

Sarcoplasmic reticulum histidine-rich calcium-binding protein is a protein that in humans is encoded by the HRC gene.

<span class="mw-page-title-main">Sarcolipin</span> Protein-coding gene in the species Homo sapiens

Sarcolipin is a micropeptide protein that in humans is encoded by the SLN gene.

<span class="mw-page-title-main">AKAP6</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.

<span class="mw-page-title-main">JPH2</span> Protein-coding gene in the species Homo sapiens

Junctophilin 2, also known as JPH2, is a protein which in humans is encoded by the JPH2 gene. Alternative splicing has been observed at this locus and two variants encoding distinct isoforms are described.

<span class="mw-page-title-main">Ryanodine receptor 1</span> Protein and coding gene in humans

Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.

<span class="mw-page-title-main">JPH1</span> Protein-coding gene in the species Homo sapiens

Junctophilin-1 is a protein that in humans is encoded by the JPH1 gene.

<span class="mw-page-title-main">TMEM38A</span> Monovalent cation channel

Trimeric intracellular cation-selective channel A (TRIC-A) is a monovalent cation channel in the SR and nuclear membranes of skeletal muscle cells, encoded by the transmembrane protein 38A (TMEM38A) gene. It is one of two known TRIC proteins, the other being TRIC-B.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000185739 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022519 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Leberer E, Charuk JH, Green NM, MacLennan DH (August 1989). "Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum". Proceedings of the National Academy of Sciences of the United States of America. 86 (16): 6047–51. Bibcode:1989PNAS...86.6047L. doi: 10.1073/pnas.86.16.6047 . PMC   297772 . PMID   2762314.
  6. Lanfranchi G, Muraro T, Caldara F, Pacchioni B, Pallavicini A, Pandolfo D, Toppo S, Trevisan S, Scarso S, Valle G (January 1996). "Identification of 4370 expressed sequence tags from a 3'-end-specific cDNA library of human skeletal muscle by DNA sequencing and filter hybridization". Genome Research. 6 (1): 35–42. doi: 10.1101/gr.6.1.35 . PMID   8681137.
  7. 1 2 Jiao Q, Bai Y, Akaike T, Takeshima H, Ishikawa Y, Minamisawa S (August 2009). "Sarcalumenin is essential for maintaining cardiac function during endurance exercise training". American Journal of Physiology. Heart and Circulatory Physiology. 297 (2): H576-82. doi:10.1152/ajpheart.00946.2008. PMC   2724216 . PMID   19502553.
  8. Yoshida M, Minamisawa S, Shimura M, Komazaki S, Kume H, Zhang M, Matsumura K, Nishi M, Saito M, Saeki Y, Ishikawa Y, Yanagisawa T, Takeshima H (February 2005). "Impaired Ca2+ store functions in skeletal and cardiac muscle cells from sarcalumenin-deficient mice". The Journal of Biological Chemistry. 280 (5): 3500–6. doi: 10.1074/jbc.M406618200 . PMID   15569689.