CD84 (Cluster of Differentiation 84) is a human protein encoded by the CD84 gene. [5]
Members of the CD2 (see MIM 186990) subgroup of the Ig superfamily, such as CD84, have similar patterns of conserved disulfide bonds and function in adhesion interactions between T lymphocytes and accessory cells. [5]
CD84 has been shown to interact with SH2D1A. [6] [7] [8] [9]
CD34 is a transmembrane phosphoglycoprotein protein encoded by the CD34 gene in humans, mice, rats and other species.
The immunoglobulin superfamily (IgSF) is a large protein superfamily of cell surface and soluble proteins that are involved in the recognition, binding, or adhesion processes of cells. Molecules are categorized as members of this superfamily based on shared structural features with immunoglobulins ; they all possess a domain known as an immunoglobulin domain or fold. Members of the IgSF include cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins. They are commonly associated with roles in the immune system. Otherwise, the sperm-specific protein IZUMO1, a member of the immunoglobulin superfamily, has also been identified as the only sperm membrane protein essential for sperm-egg fusion.
Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.
OX40L is the ligand for OX40 and is stably expressed on many antigen-presenting cells such as DC2s, macrophages, and activated B lymphocytes.
CD83 is a human protein encoded by the CD83 gene.
CD3e molecule, epsilon also known as CD3E is a polypeptide which in humans is encoded by the CD3E gene which resides on chromosome 11.
Src homology 2 (SH2) domain containing inositol polyphosphate 5-phosphatase 1(SHIP1) is an enzyme with phosphatase activity. SHIP1 is structured by multiple domain and is encoded by the INPP5D gene in humans. SHIP1 is expressed predominantly by hematopoietic cells but also, for example, by osteoblasts and endothelial cells. This phosphatase is important for the regulation of cellular activation. Not only catalytic but also adaptor activities of this protein are involved in this process. Its movement from the cytosol to the cytoplasmic membrane, where predominantly performs its function, is mediated by tyrosine phosphorylation of the intracellular chains of cell surface receptors that SHIP1 binds. Insufficient regulation of SHIP1 leads to different pathologies.
SH2 domain–containing protein 1A is a protein that in humans is encoded by the SH2D1A gene. It is often called SLAM-associated protein, where "SLAM" refers to signaling lymphocytic activation molecules. It is a SH2 domain–containing molecule that plays a role in SLAM signaling. A putative function is as an adaptor for Fyn and competitor of phosphatases, leading to modulation of SLAM family function. SAP has been implicated in autoimmunity, and a mutation of it is associated with X-linked lymphoproliferative disease. At least 32 disease-causing mutations in this gene have been discovered.
CD244 is a human protein encoded by the CD244 gene. It is also known as Natural Killer Cell Receptor 2B4
The B-cell linker protein is encoded by the BLNK gene and is an adaptor protein also known as SLP-65, BASH, and BCA. BLNK is expressed in B cells and macrophages and plays a large role in B cell receptor signalling, in a fashion analogous to the role its paralogue SLP-76 plays in T cell receptor signalling. As it has no known intrinsic enzymatic activity, the function of BLNK is to temporally and spatially coordinate and regulate signalling effectors downstream of the B cell receptor.
Signaling lymphocytic activation molecule 1 is a protein that in humans is encoded by the SLAMF1 gene. Recently SLAMF1 has also been designated CD150.
SLAM family member 6 is a protein that in humans is encoded by the SLAMF6 gene.
Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biologic effects on T cell function. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.
SLAM family member 7 is a protein that in humans is encoded by the SLAMF7 gene.
T-lymphocyte surface antigen Ly-9 is a protein that in humans is encoded by the LY9 gene. LY9 has also recently been designated CD229.
SH2 domain-containing protein 1B is a protein that in humans is encoded by the SH2D1B gene.
SLAM family member 8 is a protein that in humans is encoded by the SLAMF8 gene.
CD79b molecule, immunoglobulin-associated beta, also known as CD79B, is a human gene.
Signaling lymphocytic activation molecule (SLAM) is a family of genes. Homophilic binding between SLAMs is involved in cell-to-cell adhesion during antigen presentation.
X-linked lymphoproliferative disease is a lymphoproliferative disorder, usually caused by SH2DIA gene mutations in males. XLP-positive individuals experience immune system deficiencies that render them unable to effectively respond to the Epstein-Barr virus (EBV), a common virus in humans that typically induces mild symptoms or infectious mononucleosis (IM) in patients. There are two currently known variations of the disorder, known as XLP1 and XLP2. XLP1 is estimated to occur in approximately one in every million males, while XLP2 is rarer, estimated to occur in one of every five million males. Due to therapies such as chemotherapy and stem cell transplants, the survival rate of XLP1 has increased dramatically since its discovery in the 1970s.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.