SIGLEC6 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | SIGLEC6 , CD327, CD33L, CD33L1, CD33L2, CDW327, OBBP1, sialic acid binding Ig like lectin 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 604405 HomoloGene: 130495 GeneCards: SIGLEC6 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Sialic acid-binding Ig-like lectin 6 is a protein that in humans is encoded by the SIGLEC6 gene. [3] The gene was originally named CD33L (CD33-like) due to similarities between these genes but later became known as OB-BP1 (OB [leptin]-binding protein 1) due to its ability to bind to this factor and, finally, SIGLEC6 as the sixth member of the SIGLEC family of receptors to be identified. [4] The protein has also been given the CD designation CD327. [5]
Siglec-6 was first found to be expressed in placental tissue, [3] which was confirmed when this protein was independently identified in a screen for leptin-binding proteins. [4] Using a newly generated monoclonal antibody against Siglec-6 to detect protein expression, this latter study found that Siglec-6 was expressed by placental cytotrophoblasts and syncytiotrophoblasts as well as several human hematopoietic cell lines, including TF-1, HEL, U937, and THP-1 cells. This monoclonal antibody also bound to nearly all human peripheral blood B cells, although more recent reports have not replicated this finding. [6] [7] Siglec-6 has also been found to be highly expressed on human mast cells, including primary CD34+ progenitor cell-derived mast cells and the LAD2 cell line. [8] Examining the proteome of mast cells from several tissues, it was determined that Siglec-6 is consistently expressed on mast cells from a variety of human tissues, including adipose, skin, lung, and colon, at relatively high levels. [7] Siglec-6 was not detected on any peripheral blood leukocytes. Siglec-6 expression on human mast cells has since been extended to those isolated and cultured from skin and the mast cell lines HMC-1.2, LUVA, ROSA KITWT, and ROSA KITD816V, regardless of KIT mutation status, even when cell-surface expression of the related receptor Siglec-8 is lost. [9] In addition, single-cell RNAseq of esophageal biopsies from patients with eosinophilic esophagitis or healthy control subjects reveals that SIGLEC6 transcript is only detected in mast cells and not in any other cell types in this tissue. [9] Other than mast cells, Siglec-6 expression has been detected on exhausted tissue-like B cells [6] and a minor population of dendritic cells (DCs) known as AXL+ SIGLEC6+ (AS) DCs. [10] Siglec-6 has also been found on chronic lymphocytic leukemia and acute myeloid leukemia cells and is being explored as a target of CAR T cell therapy. [11] [12] [13]
Siglec-6 was identified in a screen for leptin-binding proteins, although it interacted with leptin with reduced affinity relative to the leptin receptor. [4] As a member of the Siglec family of receptors with a conserved arginine residue necessary for sialic acid binding, Siglec-6 was expected to interact with its ligands in a sialic acid-dependent manner. However, leptin is not sialylated, [14] [15] and binding to Siglec-6 must therefore be sialic acid independent. The physiological relevance of this interaction has not been determined. Glycodelin A binding to trophoblast cell lines was found to be dependent on sialic acid and competitive with leptin binding. [16] Glycodelin A co-immunoprecipitated with chimeric Siglec-6-Fc protein in this study, indicating a direct interaction between the proteins, which was also reduced upon the enzymatic removal of sialic acid from glycodelin A. Neither the relevant sialic acid linkage nor the remainder of the glycan structure on glycodelin A necessary for Siglec-6 binding are known. No physiological Siglec-6 ligands with apparent connections to mast cell biology have been identified. Initial studies found that Siglec-6 binds to sialyl-Tn antigen (Neu5Acα2–6GalNAcα) but not to Tn antigen (GalNAcα), 6′-sialyl-lactose (Neu5Acα2–6Galβ1–4Glc), or 3′-sialyl-lactose (Neu5Acα2–3Galβ1–4Glc). [4] Further characterization of the glycan binding specificity of Siglec-6 revealed that Siglec-6, consistent with other members of the Siglec family, requires the carboxyl group on sialic acid, but is unique in that it does not require the glycolyl group of sialic acid for binding. [17]
Siglec-6 contains in its cytoplasmic domain two known signaling motifs identified as an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). [4] Based on the presence of these motifs, it was presumed that Siglec-6 exerts an inhibitory effect on signaling cascades initiated by an immunoreceptor tyrosine-based activation motif (ITAM)-bearing receptor through the recruitment and activation of protein tyrosine phosphatases like SHP-1/2.
By introducing mutated versions of Siglec-6 lacking the key tyrosine residues in the ITIM, the ITSM, or both into a trophoblast cell line and treating the cell with the phosphatase inhibitor pervanadate, it was determined that both motifs are capable of being phosphorylated and that Siglec-6 is able to recruit SHP-2 upon phosphorylation of these motifs. [18] Furthermore, binding of glycodelin A to trophoblast cell lines was found to reduce ERK1/2 phosphorylation, c-Jun protein and mRNA levels, MMP2 and uPA mRNA levels, and invasiveness in a sialic acid- and Siglec-6-dependent manner, suggesting that Siglec-6 reduces trophoblast invasiveness in response to encountering glycodelin A expression in the decidualized endometrium. [16]
Antibody ligation of Siglec-6 on human CD34+ progenitor-derived mast cells inhibited GM-CSF secretion and slightly reduced degranulation in response to IgE crosslinking, although IL-8 secretion in response to stimulation was not similarly affected. [19] This observation of Siglec-6 inhibitory function on mast cells was expanded to human skin-derived mast cells and the G protein-coupled receptors MRGPRX2 and C5aR, in addition to the ITAM-bearing FcεRI. [9] Antibody ligation of Siglec-6 reduced mast cell degranulation in response to lower levels of the stimuli that act through these receptors. However, much more potent inhibition was observed by co-crosslinking Siglec-6 and FcεRI through the use of a secondary crosslinking antibody or the use of streptavidin-based tetramers of antibodies targeting Siglec-6 and FcεRI. [9] Additionally, the inhibitory effect of Siglec-6 ligation remained for at least 4.5 hours, perhaps due to the observed stability of the receptor on the cell surface following antibody ligation, suggesting that the receptor may continue to participate in inhibitory signaling for prolonged periods of time.
Knockdown of SIGLEC6 using siRNA in exhausted tissue-like B cells from HIV-infected individuals enhances the ability of these cells to proliferate or secrete CCL3 or IL-6 upon stimulation. [6] The lack of known Siglec-6 ligand in this system suggests that Siglec-6 may be reducing responsiveness of these cells through tonic signaling.
A mast cell is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a part of the immune and neuroimmune systems. Mast cells were discovered by Paul Ehrlich in 1877. Although best known for their role in allergy and anaphylaxis, mast cells play an important protective role as well, being intimately involved in wound healing, angiogenesis, immune tolerance, defense against pathogens, and vascular permeability in brain tumors.
In immunology, an Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.
MAFA is a type II membrane glycoprotein, first identified on the surface of rat mucosal-type mast cells of the RBL-2H3 line. More recently, human and mouse homologues of MAFA have been discovered yet also expressed by NK and T-cells. MAFA is closely linked with the type 1 Fcɛ receptors in not only mucosal mast cells of humans and mice but also in the serosal mast cells of these same organisms.
The B-cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B-cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, and is typically located on the outer surface of these lymphocyte cells. Through biochemical signaling and by physically acquiring antigens from the immune synapses, the BCR controls the activation of the B cell. B cells are able to gather and grab antigens by engaging biochemical modules for receptor clustering, cell spreading, generation of pulling forces, and receptor transport, which eventually culminates in endocytosis and antigen presentation. B cells' mechanical activity adheres to a pattern of negative and positive feedbacks that regulate the quantity of removed antigen by manipulating the dynamic of BCR–antigen bonds directly. Particularly, grouping and spreading increase the relation of antigen with BCR, thereby proving sensitivity and amplification. On the other hand, pulling forces delinks the antigen from the BCR, thus testing the quality of antigen binding.
Tyrosine-protein kinase SYK, also known as spleen tyrosine kinase, is an enzyme which in humans is encoded by the SYK gene.
Sialyl LewisX (sLeX), also known as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1), is a tetrasaccharide carbohydrate which is usually attached to O-glycans on the surface of cells. It is known to play a vital role in cell-to-cell recognition processes. It is also the means by which an egg attracts sperm; first, to stick to it, then bond with it and eventually form a zygote.
Siglecs(Sialic acid-binding immunoglobulin-type lectins) are cell surface proteins that bind sialic acid. They are found primarily on the surface of immune cells and are a subset of the I-type lectins. There are 14 different mammalian Siglecs, providing an array of different functions based on cell surface receptor-ligand interactions.
CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. Generally speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the development of autoimmune diseases.
CD33 or Siglec-3 is a transmembrane receptor expressed on cells of myeloid lineage. It is usually considered myeloid-specific, but it can also be found on some lymphoid cells.
An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acid serine, I is the amino acid isoleucine, and V is the amino acid valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.
Sialic acid-binding Ig-like lectin 7 is a protein that in humans is encoded by the SIGLEC7 gene. SIGLEC7 has also been designated as CD328.
Sialic acid-binding Ig-like lectin 12, or Siglec-XII, is a protein that in humans, is encoded by the SIGLEC12 gene.
Sialic acid-binding Ig-like lectin 5 is a protein that in humans is encoded by the SIGLEC5 gene. SIGLEC5 has also been designated CD170.
Sialic acid-binding Ig-like lectin 9 is a protein that in humans is encoded by the SIGLEC9 gene.
Sialic acid-binding Ig-like lectin 8 is a protein that in humans is encoded by the SIGLEC8 gene. This gene is located on chromosome 19q13.4, about 330 kb downstream of the SIGLEC9 gene. Within the siglec family of transmembrane proteins, Siglec-8 belongs to the CD33-related siglec subfamily, a subfamily that has undergone rapid evolution.
Paired immunoglobulin-like type 2 receptor beta is a protein that in humans is encoded by the PILRB gene.
Sialic acid-binding Ig-like lectin 10 is a protein that in humans is encoded by the SIGLEC10 gene. Siglec-G is often referred to as the murine paralog of human Siglec-10
Paired immunoglobin like type 2 receptor alpha is a protein that in humans is encoded by the PILRA gene.
Lirentelimab is a humanized nonfucosylated monoclonal antibody that targets sialic acid-binding Ig-like lectin 8 (SIGLEC8). In a randomized clinical trial, lirentelimab was found to improve eosinophil counts and symptoms in individuals with eosinophilic gastritis and duodenitis. Adverse reactions include infusion reactions, which are mild to moderate and typically occur following the first infusion.
Paired receptors are pairs or clusters of receptor proteins that bind to extracellular ligands but have opposing activating and inhibitory signaling effects. Traditionally, paired receptors are defined as homologous pairs with similar extracellular domains and different cytoplasmic regions, whose genes are located together in the genome as part of the same gene cluster and which evolved through gene duplication. Homologous paired receptors often, but not always, have a shared ligand in common. More broadly, pairs of receptors have been identified that exhibit paired functional behavior - responding to a shared ligand with opposing intracellular signals - but are not closely homologous or co-located in the genome. Paired receptors are highly expressed in the cells of the immune system, especially natural killer (NK) and myeloid cells, and are involved in immune regulation.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.