U937 (cell line)

Last updated

U-937 cells are a pro-monocytic model cell line used in biomedical research. [1] They were isolated from the histiocytic lymphoma of a 37-year-old male patient in 1974. [2] Due to the relative uniformity of expanded cultures and lower maintenance requirements these cells have been since used as an important tool for studying phagocyte differentiation and different kinds of cell-to-cell interactions. U-937 cells mature and differentiate in response to a number of soluble stimuli, adopting the morphology and characteristics of monocytes, macrophages or dendritic cells. [3]

Contents

U-937 cells are of myeloid lineage and thus secrete a large number of cytokines and chemokines either constitutively (e.g., IL-1 and GM-CSF) or in response to soluble stimuli. TNFα and recombinant GM-CSF for example independently promote IL-10 production in U937 cells. [4] This cell line is therefore widely used for cytokine level read-outs as a result of exposure to various chemical compounds. Namely, production of IL-1β, IL-6, IL-8, IL-10, TNF-α, iNOS, COX-2 and NF-κB is commonly measured. [3]

U-937 cells bear the t(10;11)(p13;q14) translocation causing a fusion of MLLT10 and Ap-3-like clathrin assembly protein PICALM. [3] The HLA alleles present in U-937 cells are HLA-A*03:01, A*31:01, B*18:01, B*51:01, Cw*01:02 and Cw*07:02. [5]

Maintenance & differentiation

U-937 line can be cultured in vitro for up to 3 months or stored frozen in -80 °C for several years following an appropriate protocol. RPMI 1640 or, alternatively, DMEM media can be used, both supplemented with 10% FBS and antibiotics (usually penicillin or streptomycin). In some cases, another supplement that can be utilized is zwitterionic buffer – HEPES. [3]

Differentiation induction

Induction of differentiation of U-937 into monocytes or macrophages can be achieved by various agents such as PMA (phorbol 12-myristate 13-acetate), retinoic acids, vitamin D3 (1,25- dihydroxyvitamin D3) or TPA (12-O-tetradecanoylphorbol13-acetate). Further differentiation into dendritic cells can be induced by exposing them to self-peptide from apolipoprotein E (Ep1.B). This treatment leads to changes in surface marker expression and thus induces acquirement of DC-like morphology. [3]

Beside the cell types mentioned above, U-937 cells can be differentiated into osteoclasts – cell subtype crucial for bone resorption and remodeling. This phenotype can be achieved by combining stimulation with PMA and vitamin D3 with addition of magnesium, which can further perpetuate the differentiation process. [6]

Special features & use in research

Due to limited possibilities for obtaining primary macrophages, U-937 cell line, beside the THP-1 cells, is a crucial tool for studying these phagocytes in vitro. It should be taken into account, however, that both of said cell lines offer distinct results following the culture. U-937-derived macrophages preferentially respond to M2-inducing stimuli, subsequently leading them to acquire the phenotype of alternatively activated macrophages. Whereas, in the case of THP-1 cells, the polarization is reversed in favor of classical M1 macrophages. Both cell lines can be artificially polarized in either direction though. The only difference being that the M1 phenotype establishment in U-937-derived macrophages will not be as strong as in THP-1, and vice versa. [7]

Leukemia

According to Si et al. (2022), the U-937 cell line specifically could be a promising model for acute myeloid leukemia, as it was shown to actively express the JAK3 M511I activated mutation observed in about 10% of AML patients. In this study, they also confirm that the U-937 cells do respond to a model JAK3 inhibitor, and their proliferation is thus impaired by it. [8]

Phagocytosis

As stated before, U-937 is a valuable tool for broadening the knowledge of phagocytes. One of the traits that are especially worth studying is their ability of ROS (reactive oxygen species) generation as a part of non-specific immune response. Prasad et al. (2020) present the current possibilities of ROS imaging in these cells via electron paramagnetic resonance spectroscopy and confocal laser scanning microscopy. [9]

Apoptosis

U-937V is a variant cell line derived from the original U-937 cells, the difference being their increased susceptibility to the effects of TNFα. The unique feature of these cells is the absence of cellular disintegration as an accompanying phenomenon of apoptosis. It was documented that the basic molecular processes (degradation of DNA, PS externalization, caspase activity or CytC release) following the induction of apoptosis are not drastically changed in these cells. This subtype could therefore serve as a good model for regulation of apoptotic body formation or blebbing. [10]

Related Research Articles

<span class="mw-page-title-main">Macrophage</span> Type of white blood cell

Macrophages are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.

<span class="mw-page-title-main">Phagocyte</span> Cells that ingest harmful matter within the body

Phagocytes are cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or dying cells. Their name comes from the Greek phagein, "to eat" or "devour", and "-cyte", the suffix in biology denoting "cell", from the Greek kutos, "hollow vessel". They are essential for fighting infections and for subsequent immunity. Phagocytes are important throughout the animal kingdom and are highly developed within vertebrates. One litre of human blood contains about six billion phagocytes. They were discovered in 1882 by Ilya Ilyich Mechnikov while he was studying starfish larvae. Mechnikov was awarded the 1908 Nobel Prize in Physiology or Medicine for his discovery. Phagocytes occur in many species; some amoebae behave like macrophage phagocytes, which suggests that phagocytes appeared early in the evolution of life.

<span class="mw-page-title-main">Monocyte</span> Subtype of leukocytes

Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and monocyte-derived dendritic cells. As a part of the vertebrate innate immune system monocytes also influence adaptive immune responses and exert tissue repair functions. There are at least three subclasses of monocytes in human blood based on their phenotypic receptors.

<span class="mw-page-title-main">Kupffer cell</span> Macrophages located in the liver

Kupffer cells, also known as stellate macrophages and Kupffer–Browicz cells, are specialized cells localized in the liver within the lumen of the liver sinusoids and are adhesive to their endothelial cells which make up the blood vessel walls. Kupffer cells comprise the largest population of tissue-resident macrophages in the body. Gut bacteria, bacterial endotoxins, and microbial debris transported to the liver from the gastrointestinal tract via the portal vein will first come in contact with Kupffer cells, the first immune cells in the liver. It is because of this that any change to Kupffer cell functions can be connected to various liver diseases such as alcoholic liver disease, viral hepatitis, intrahepatic cholestasis, steatohepatitis, activation or rejection of the liver during liver transplantation and liver fibrosis. They form part of the mononuclear phagocyte system.

<span class="mw-page-title-main">Microglia</span> Glial cell located throughout the brain and spinal cord

Microglia are a type of neuroglia located throughout the brain and spinal cord. Microglia account for about 10-15% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune defense in the central nervous system (CNS). Microglia originate in the yolk sac under a tightly regulated molecular process. These cells are distributed in large non-overlapping regions throughout the CNS. Microglia are key cells in overall brain maintenance—they are constantly scavenging the CNS for plaques, damaged or unnecessary neurons and synapses, and infectious agents. Since these processes must be efficient to prevent potentially fatal damage, microglia are extremely sensitive to even small pathological changes in the CNS. This sensitivity is achieved in part by the presence of unique potassium channels that respond to even small changes in extracellular potassium. Recent evidence shows that microglia are also key players in the sustainment of normal brain functions under healthy conditions. Microglia also constantly monitor neuronal functions through direct somatic contacts and exert neuroprotective effects when needed.

A histiocyte is a vertebrate cell that is part of the mononuclear phagocyte system. The mononuclear phagocytic system is part of the organism's immune system. The histiocyte is a tissue macrophage or a dendritic cell. Part of their job is to clear out neutrophils once they've reached the end of their lifespan.

K562 cells were the first human immortalised myelogenous leukemia cell line to be established. K562 cells are of the erythroleukemia type, and the cell line is derived from a 53-year-old female chronic myelogenous leukemia patient in blast crisis. The cells are non-adherent and rounded, are positive for the bcr:abl fusion gene, and bear some proteomic resemblance to both undifferentiated granulocytes and erythrocytes.

Malignant histiocytosis is a rare hereditary disease found in the Bernese Mountain Dog and humans, characterized by histiocytic infiltration of the lungs and lymph nodes. The liver, spleen, and central nervous system can also be affected. Histiocytes are a component of the immune system that proliferate abnormally in this disease. In addition to its importance in veterinary medicine, the condition is also important in human pathology.

Chemokine ligand 1 (CCL1) is also known as small inducible cytokine A1 and I-309 in humans. CCL1 is a small glycoprotein that belongs to the CC chemokine family.

The HL-60 cell line is a human leukemia cell line that has been used for laboratory research on blood cell formation and physiology. HL-60 proliferates continuously in suspension culture in nutrient and antibiotic chemicals. The doubling time is about 36–48 hours. The cell line was derived from a 36-year-old woman who was originally reported to have acute promyelocytic leukemia at the MD Anderson Cancer Center. HL-60 cells predominantly show neutrophilic promyelocytic morphology. Subsequent evaluation, including the karyotype that showed absence of the defining t(15;17) translocation, concluded that HL-60 cells are from a case of AML FAB-M2.

THP-1 is a human monocytic cell line derived from an acute monocytic leukemia patient. It is used to test leukemia cell lines in immunocytochemical analysis of protein-protein interactions, and immunohistochemistry.

Macrophage-1 antigen is a complement receptor ("CR3") consisting of CD11b and CD18.

<span class="mw-page-title-main">Epithelioid cell</span>

According to a common point of view epithelioid cells are derivatives of activated macrophages resembling epithelial cells.

<span class="mw-page-title-main">Granulocyte-macrophage colony-stimulating factor receptor</span> Protein-coding gene in humans

The granulocyte-macrophage colony-stimulating factor receptor, also known as CD116, is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In contrast to M-CSF and G-CSF which are lineage specific, GM-CSF and its receptor play a role in earlier stages of development. The receptor is primarily located on neutrophils, eosinophils and monocytes/macrophages, it is also on CD34+ progenitor cells (myeloblasts) and precursors for erythroid and megakaryocytic lineages, but only in the beginning of their development.

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein found in humans

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">CD47</span> Protein-coding gene in humans

CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage.

Lenzilumab is a humanized monoclonal antibody that targets colony stimulating factor 2 (CSF2)/granulocyte-macrophage colony stimulating factor (GM-CSF).

<span class="mw-page-title-main">Gwendalyn J. Randolph</span> American immunologist

Gwendalyn J. Randolph is an American immunologist, the Emil R. Unanue Distinguished Professor in the Department of Immunology and Pathology at Washington University School of Medicine where she is currently co-director of the Immunology Graduate Program. During her postdoctoral work, Randolph characterized monocyte differentiation to dendritic cells and macrophages and made advances in our understanding of dendritic cell trafficking and the fate of monocytes recruited to sites of inflammation. Her lab has contributed to the Immunological Genome Project by characterizing macrophage gene expression. Her work now focuses on the immunological mechanisms driving atherosclerosis and inflammatory bowel disease (IBD) by exploring lymphatic function and lipoprotein trafficking.

Cells destined for apoptosis release molecules referred to as find-me signals. These signal molecules are used to attract phagocytes which engulf and eliminate damaged cells. Find-me signals are typically released by the apoptotic cells while the cell membrane remains intact. This ensures that the phagocytic cells are able to remove the dying cells before their membranes are compromised. A leaky membrane leads to secondary necrosis which may cause additional inflammation, therefore, it is best to remove dying cells before this occurs. One cell is capable of releasing multiple find-me signals. Should a cell lack the ability to release its find-me signal, other cells may release additional find-me signals to overcome the discrepancy.

References

  1. ATCC U-937 CRL-1593.2™ https://www.atcc.org/products/crl-1593.2
  2. Sundström C, Nilsson K (May 1976). "Establishment and characterization of a human histiocytic lymphoma cell line (U-937)". International Journal of Cancer. 17 (5): 565–577. doi:10.1002/ijc.2910170504. PMID   178611. S2CID   19334036.
  3. 1 2 3 4 5 Chanput W, Peters V, Wichers H (2015). "THP-1 and U937 Cells". In Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds.). The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer. pp. 147–159. doi:10.1007/978-3-319-16104-4_14. ISBN   978-3-319-15791-7. PMID   29787063 . Retrieved 2023-01-07.
  4. Lehmann MH (June 1998). "Recombinant human granulocyte-macrophage colony-stimulating factor triggers interleukin-10 expression in the monocytic cell line U937". Molecular Immunology. 35 (8): 479–485. doi:10.1016/S0161-5890(98)00043-1. PMID   9798652.
  5. Gebreselassie D, Spiegel H, Vukmanovic S (November 2006). "Sampling of major histocompatibility complex class I-associated peptidome suggests relatively looser global association of HLA-B*5101 with peptides". Human Immunology. 67 (11): 894–906. doi:10.1016/j.humimm.2006.08.294. PMC   2269730 . PMID   17145369.
  6. Parenti S, Sandoni L, Montanari M, Zanocco-Marani T, Anesi A, Iotti S, et al. (August 2021). "Magnesium favors the capacity of vitamin D3 to induce the monocyte differentiation of U937 cells". Magnesium Research. 34 (3): 114–129. doi:10.1684/mrh.2021.0490 (inactive 31 January 2024). PMID   34859787.{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  7. Nascimento CR, Rodrigues Fernandes NA, Gonzalez Maldonado LA, Rossa Junior C (December 2022). "Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies". Biochemistry and Biophysics Reports. 32: 101383. doi:10.1016/j.bbrep.2022.101383. PMC   9677084 . PMID   36420419.
  8. Si H, Wang J, He R, Yu X, Li S, Huang J, et al. (2021). "Identification of U937JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor". Frontiers in Oncology. 11: 807200. doi: 10.3389/fonc.2021.807200 . PMC   8802890 . PMID   35111683.
  9. Prasad A, Sedlářová M, Balukova A, Ovsii A, Rác M, Křupka M, et al. (2020). "Reactive Oxygen Species Imaging in U937 Cells". Frontiers in Physiology. 11: 552569. doi: 10.3389/fphys.2020.552569 . PMC   7593787 . PMID   33178031.
  10. Stasiłojć G, Pinto S, Wyszkowska R, Wejda M, Słomińska EM, Filipska M, et al. (June 2013). "U937 variant cells as a model of apoptosis without cell disintegration". Cellular & Molecular Biology Letters. 18 (2): 249–262. doi:10.2478/s11658-013-0087-y. PMC   6275624 . PMID   23605997.