SELPLG | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | SELPLG , CD162, CLA, PSGL-1, PSGL1, selectin P ligand | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 600738; MGI: 106689; HomoloGene: 2261; GeneCards: SELPLG; OMA:SELPLG - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Selectin P ligand, also known as SELPLG or CD162 (cluster of differentiation 162), is a human gene.
SELPLG codes for PSGL-1, the high affinity counter-receptor for P-selectin on myeloid cells and stimulated T lymphocytes. As such, it plays a critical role in the tethering of these cells to activated platelets or endothelia expressing P-selectin. Naive and stimulated lymphocytes appear to use PSGL-1 for trafficking into and out of lymph nodes. [5] The gene and structure of human PSGL-1 was first reported in 1993. [6]
The organization of the SELPLG gene closely resembles that of CD43 and the human platelet glycoprotein GpIb-alpha both of which have an intron in the 5-prime-noncoding region, a long second exon containing the complete coding region, and TATA-less promoters. [7] [8]
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like glycoprotein found primarily on the surface of white blood cells cells. PSGL-1 can serve as a ligand for P-selectin (P stands for platelet), which is one of a family of selectins that includes E-selectin (endothelial) and L-selectin (leukocyte). Selectins are part of the broader family of cell adhesion molecules. PSGL-1 can bind to each of the three members of the family but binds best (with the highest affinity) to P-selectin.
PSGL-1 protein requires two distinct posttranslational modifications to gain its selectin binding activity: [9] [10] [11] [12]
PSGL-1 is expressed on all white blood cells and plays an important role in the recruitment of white blood cells into inflamed tissue: White blood cells normally do not interact with the endothelium of blood vessels. However, inflammation causes the expression of cell adhesion molecules (CAM) such as P-selectin on the surface of the blood vessel wall. White blood cells present in flowing blood can interact with CAM. The first step in this interaction process is carried out by PSGL-1 interacting with P-selectin and/or E-selectin on endothelial cells and adherent platelets. This interaction results in "rolling" of the white blood cell on the endothelial cell surface followed by stable adhesion and transmigration of the white blood cell into the inflamed tissue.[ citation needed ]
The systemic administration of soluble recombinant forms of human PSGL-1 such as rPSGL-Ig or TSGL-Ig can prevent reperfusion injury caused by leukocyte influx after an ischemic insult to various types of vascularized tissues (IRI). The protective effects of soluble recombinant forms of PSGL-1, acting as pan-selectin antagonists, has been studied in multiple animal models of solid organ transplant and ARDS. [13] [14]
In mice PSGL-1 acts as an immune factor regulating multiple T-cell checkpoints. Consequently, the antagonsim of PSGL-1 engagement and signaling has been proposed as a promising target for future checkpoint inhibitor anti-cancer drugs. [15]
PSGL-1 has been shown to bind to VISTA (V-domain Ig suppressor of T cell activation) but this binding only occurs under acidic pH conditions (pH < 6.5) such as can be found in tumor microenvironments (TME). [16]
In mice, PSGL-1 seems to facilitate T cell exhaustion in tumors. [17] PSGL-1 deficient mice treated with anti-PD-1 antibodies show a dramatic reduction in the growth of melanoma tumors as compared with wild-type mice treated with anti-PD-1 antibodies. [18] Treatments with either soluble recombinant forms of PSGL-1 (PSGL-Ig) or monoclonal antibodies that bind and block PSGL-1 also reduce tumor growth in mouse models, especially when combined with anti-PD-1 monoclonal antibody treatments. [19]
Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in the cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer.
In biochemistry, tyrosine sulfation is a posttranslational modification where a sulfate group is added to a tyrosine residue of a protein molecule. Secreted proteins and extracellular parts of membrane proteins that pass through the Golgi apparatus may be sulfated. Sulfation was first discovered by Bettelheim in bovine fibrinopeptide B in 1954 and later found to be present in animals and plants but not in prokaryotes or in yeast.
The selectins are a family of cell adhesion molecules. All selectins are single-chain transmembrane glycoproteins that share similar properties to C-type lectins due to a related amino terminus and calcium-dependent binding. Selectins bind to sugar moieties and so are considered to be a type of lectin, cell adhesion proteins that bind sugar polymers.
The CD44 antigen is a cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromosome 11. CD44 has been referred to as HCAM, Pgp-1, Hermes antigen, lymphocyte homing receptor, ECM-III, and HUTCH-1.
P-selectin is a type-1 transmembrane protein that in humans is encoded by the SELP gene.
ICAM-1 also known as CD54 is a protein that in humans is encoded by the ICAM1 gene. This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by rhinovirus as a receptor for entry into respiratory epithelium.
L-selectin, also known as CD62L, is a cell adhesion molecule found on the cell surface of leukocytes, and the blastocyst. It is coded for in the human by the SELL gene. L-selectin belongs to the selectin family of proteins, which recognize sialylated carbohydrate groups containing a Sialyl LewisX (sLeX) determinant. L-selectin plays an important role in both the innate and adaptive immune responses by facilitating leukocyte-endothelial cell adhesion events. These tethering interactions are essential for the trafficking of monocytes and neutrophils into inflamed tissue as well as the homing of lymphocytes to secondary lymphoid organs. L-selectin is also expressed by lymphoid primed hematopoietic stem cells and may participate in the migration of these stem cells to the primary lymphoid organs. In addition to its function in the immune response, L-selectin is expressed on embryonic cells and facilitates the attachment of the blastocyst to the endometrial endothelium during human embryo implantation.
E-selectin, also known as CD62 antigen-like family member E (CD62E), endothelial-leukocyte adhesion molecule 1 (ELAM-1), or leukocyte-endothelial cell adhesion molecule 2 (LECAM2), is a selectin cell adhesion molecule expressed only on endothelial cells activated by cytokines. Like other selectins, it plays an important part in inflammation. In humans, E-selectin is encoded by the SELE gene.
Sialyl LewisX (sLeX), also known as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1), is a tetrasaccharide carbohydrate which is usually attached to O-glycans on the surface of cells. It is known to play a vital role in cell-to-cell recognition processes. It is also the means by which an egg attracts sperm; first, to stick to it, then bond with it and eventually form a zygote.
In immunology, leukocyte extravasation is the movement of leukocytes out of the circulatory system (extravasation) and towards the site of tissue damage or infection. This process forms part of the innate immune response, involving the recruitment of non-specific leukocytes. Monocytes also use this process in the absence of infection or tissue damage during their development into macrophages.
CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.
Junctional adhesion molecule A is a protein that in humans is encoded by the F11R gene. It has also been designated as CD321.
Signal regulatory protein α (SIRPα) is a regulatory membrane glycoprotein from SIRP family expressed mainly by myeloid cells and also by stem cells or neurons.
Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase is an enzyme that in humans is encoded by the GCNT1 gene.
CD226, PTA1 or DNAM-1 is a ~65 kDa immunoglobulin-like transmembrane glycoprotein expressed on the surface of natural killer cells, NK T cell, B cells, dendritic cells, hematopoietic precursor cells, platelets, monocytes and T cells.
Carbohydrate sulfotransferase 2 is an enzyme that in humans is encoded by the CHST2 gene.
Carbohydrate sulfotransferase 4 is an enzyme that in humans is encoded by the CHST4 gene.
Carbohydrate sulfotransferase 1 is an enzyme that in humans is encoded by the CHST1 gene.
Disintegrin and metalloproteinase domain-containing protein 28 is an enzyme that in humans is encoded by the ADAM28 gene.
A catch bond is a type of noncovalent bond whose dissociation lifetime increases with tensile force applied to the bond. Normally, bond lifetimes are expected to diminish with force. In the case of catch bonds, the lifetime of the bond actually increases up to a maximum before it decreases like in a normal bond. Catch bonds work in a way that is conceptually similar to that of a Chinese finger trap. While catch bonds are strengthened by an increase in force, the force increase is not necessary for the bond to work. Catch bonds were suspected for many years to play a role in the rolling of leukocytes, being strong enough to roll in presence of high forces caused by high shear stresses, while avoiding getting stuck in capillaries where the fluid flow, and therefore shear stress, is low. The existence of catch bonds was debated for many years until strong evidence of their existence was found in bacteria. Definite proof of their existence came shortly thereafter in leukocytes.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.