Integrin beta-1 (ITGB1), also known as CD29, is a cell surface receptor that in humans is encoded by the ITGB1 gene. [5] This integrin associates with integrin alpha 1 and integrin alpha 2 to form integrin complexes which function as collagen receptors. It also forms dimers with integrin alpha 3 to form integrin receptors for netrin 1 and reelin. These and other integrin beta 1 complexes have been historically known as very late activation (VLA) antigens.
Integrin beta 1 is expressed as at least four different isoforms. In cardiac muscle and skeletal muscle, the integrin beta-1D isoform is specifically expressed, and localizes to costameres, where it aids in the lateral force transmission from the Z-discs to the extracellular matrix. Abnormal levels of integrin beta-1D have been found in limb girdle muscular dystrophy and polyneuropathy.
Integrin beta-1 can exist as different isoforms via alternative splicing. Six alternatively spliced variants have been found for this gene which encode five proteins with alternate C-termini. [6] Integrin receptors exist as heterodimers, and greater than 20 different integrin heterodimeric receptors have been described. All integrins, alpha and beta forms, have large extracellular and short intracellular domains. [7] The cytoplasmic domain of integrin beta-1 binds to the actin cytoskeleton. [8] Integrin beta-1 is the most abundant beta-integrin expressed and associates with at least 10 different integrin-alpha subunits. [7]
Integrin family members are membrane receptors involved in cell adhesion and recognition in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic diffusion of tumor cells. [7] Integrins link the actin cytoskeleton with the extracellular matrix and they transmit signals bidirectionally between the extracellular matrix and cytoplasmic domains. [9] [10] Beta-integrins are primarily responsible for targeting integrin dimers to the appropriate subcellular locations, which in adhesive cells is mainly focal adhesions. [8] [11] Integrin beta-1 mutants lose the ability to target to sites of focal adhesions. [12] [13]
Three novel isoforms of integrin beta-1 have been identified, termed beta-1B, beta-1C and beta-1D. Integrin beta-1B is transcribed when the proximal 26 amino acids of the cytoplasmic domain in exon 6 are retained and then succeeded by a 12 amino acid stretch from an adjacent intronic region. [14] The integrin beta-1B isoform appears to act as a dominant negative in that it inhibits cell adhesion. [15] A second integrin beta-1 isoform, termed beta-1C, was described to have an additional 48 amino acids appended to the 26 amino acids in the cytoplasmic domain; [16] the function of this isoform was an inhibitory one on DNA synthesis in the G1 phase of the cell cycle. [17] The third isoform, termed beta-1D, is a striated muscle-specific isoform, which replaces the canonical beta-1A isoform in cardiac and skeletal muscle cells. This isoform is produced from splicing into a novel additional exon between exons 6 and 7. The cytoplasmic domain of integrin beta-1D replaces the distal 21 amino acids (present in integrin beta-1A) with an alternative stretch of 24 amino acids (13 unique). [18] [19]
Integrin beta-1D appears to be developmentally regulated during myofibrilogenesis, [19] appearing immediately following the fusion of myoblasts in C2C12 cell with rising levels throughout myofibrillar differentiation. [20] Integrin beta-1D is specifically localized to costameres and intercalated discs of cardiac muscle and costameres, myotendinous junctions and neuromuscular junctions of skeletal muscle, and it appears to function in general like other integrins, as the clustering of beta-1D integrins on the surface of CHO cells resulted in tyrosine phosphorylation of pp125FAK and induced mitogen-activated protein kinase activation. [20]
In patients with limb girdle muscular dystrophy, type 2C, beta-1D integrin has been shown to be severely reduced in skeletal muscle biopsies, coordinate with a reduction in alpha 7B-integrin and filamin 2. [21]
In patients with sensitive-motor polyneuropathy, levels of integrin alpha-7B, integrin beta-1D and agrin were significantly reduced nearly to undetectable levels; and this corresponded with lower mRNA levels. [22]
CD29 has been shown to interact with
Integrins are transmembrane receptors that help cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.
Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major constituents of the basement membrane, namely the basal lamina. Laminins are vital to biological activity, influencing cell differentiation, migration, and adhesion.
In mammalian cells, vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting proteins involved in anchoring F-actin to the membrane.
Paxillin is a protein that in humans is encoded by the PXN gene. Paxillin is expressed at focal adhesions of non-striated cells and at costameres of striated muscle cells, and it functions to adhere cells to the extracellular matrix. Mutations in PXN as well as abnormal expression of paxillin protein has been implicated in the progression of various cancers.
Integrin-linked kinase is an enzyme that in humans is encoded by the ILK gene involved with integrin-mediated signal transduction. Mutations in ILK are associated with cardiomyopathies. It is a 59kDa protein originally identified in a yeast-two hybrid screen with integrin β1 as the bait protein. Since its discovery, ILK has been associated with multiple cellular functions including cell migration, proliferation, and adhesion.
Integrin alpha-3 is a protein that in humans is encoded by the ITGA3 gene. ITGA3 is an integrin alpha subunit. Together with beta-1 subunit, it makes up half of the α3β1 integrin duplex that plays a role in neural migration and corticogenesis, acted upon by such factors as netrin-1 and reelin.
Integrin beta-3 (β3) or CD61 is a protein that in humans is encoded by the ITGB3 gene. CD61 is a cluster of differentiation found on thrombocytes.
Dystrobrevin is a protein that binds to dystrophin in the costamere of skeletal muscle cells. In humans, there are at least two isoforms of dystrobrevin, dystrobrevin alpha and dystrobrevin beta.
PTK2 protein tyrosine kinase 2 (PTK2), also known as focal adhesion kinase (FAK), is a protein that, in humans, is encoded by the PTK2 gene. PTK2 is a focal adhesion-associated protein kinase involved in cellular adhesion and spreading processes. It has been shown that when FAK was blocked, breast cancer cells became less metastatic due to decreased mobility.
Integrin, beta 4 (ITGB4) also known as CD104, is a human gene.
Alpha-actinin-2 is a protein which in humans is encoded by the ACTN2 gene. This gene encodes an alpha-actinin isoform that is expressed in both skeletal and cardiac muscles and functions to anchor myofibrillar actin thin filaments and titin to Z-discs.
Integrin beta-5 is a protein that in humans is encoded by the ITGB5 gene.
Integrin beta-6 is a protein that in humans is encoded by the ITGB6 gene. It is the β6 subunit of the integrin αvβ6. Integrins are αβ heterodimeric glycoproteins which span the cell’s membrane, integrating the outside and inside of the cell. Integrins bind to specific extracellular proteins in the extracellular matrix or on other cells and subsequently transduce signals intracellularly to affect cell behaviour. One α and one β subunit associate non-covalently to form 24 unique integrins found in mammals. While some β integrin subunits partner with multiple α subunits, β6 associates exclusively with the αv subunit. Thus, the function of ITGB6 is entirely associated with the integrin αvβ6.
Integrin beta-7 is an integrin protein that in humans is encoded by the ITGB7 gene. It can pair with ITGA4 (CD49d) to form the heterodimeric integrin receptor α4β7, or with ITGAE (CD103) to form αEβ7.
Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.
Integrin beta-1-binding protein 1 is a protein that in humans is encoded by the ITGB1BP1 gene.
Integrin alpha-9 is a protein that in humans is encoded by the ITGA9 gene. Cytogenetic location: 3p22.2
Talin-1 is a protein that in humans is encoded by the TLN1 gene. Talin-1 is ubiquitously expressed, and is localized to costamere structures in cardiac and skeletal muscle cells, and to focal adhesions in smooth muscle and non-muscle cells. Talin-1 functions to mediate cell-cell adhesion via the linkage of integrins to the actin cytoskeleton and in the activation of integrins. Altered expression of talin-1 has been observed in patients with heart failure, however no mutations in TLN1 have been linked with specific diseases.
Talin-2 is a protein in humans that is encoded by the TLN2 gene. It belongs to the talin protein family. This gene encodes a protein related to talin-1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments. Talin-2 is expressed at high levels in cardiac muscle and functions to provide linkages between the extracellular matrix and actin cytoskeleton at costamere structures to transduce force laterally.
Integrin α4β7 is an integrin heterodimer composed of CD49d (alpha-4) subunit and beta-7 subunit noncovalently linked. LPAM-1 is expressed on the cell surface of leukocytes. This receptor is involved in lymphocyte trafficking pathway to site of inflammation in intestinal tissues.