CD200

Last updated
CD200
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CD200 , CD200 molecule, MOX1, MOX2, MRC, OX-2, CD-200
External IDs OMIM: 155970 MGI: 1196990 HomoloGene: 4344 GeneCards: CD200
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_010818
NM_001358443

RefSeq (protein)

n/a

Location (UCSC) Chr 3: 112.33 – 112.36 Mb Chr 16: 45.2 – 45.23 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

OX-2 membrane glycoprotein, also named CD200 (Cluster of Differentiation 200) [5] is a human protein encoded by the CD200 gene. [6] CD200 gene is in human located on chromosome 3 in proximity to genes encoding other B7 proteins CD80/CD86. In mice CD200 gene is on chromosome 16. [7]

The protein encoded by this gene is a type-1 membrane glycoprotein, which contains two IgSF immunoglobulin domains, transmembrane region and a 19 amino acid long cytoplasmatic domain. CD 200 belongs to the immunoglobulin superfamily, particularly belongs to the B7 receptor family. [7] [6]

Expression

CD200 is expressed on dendritic cells, activated B lymphocytes, activated T lymphocytes, thymocytes, endothelial cells, neurons and osteoblast precursors. Moreover CD200 is expressed on various types of human cancer cells including hairy cell leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, malignant melanoma, multiple myeloma, testicular cancer, renal carcinoma, colon carcinoma and glioblastoma multiforme. [7] [8]

In innate immunity cells CD200 expression is induced upon TLRs and NLRs activation.

At the transcriptional level, CD200 expression is regulated by C/EBP-β. It was shown that CD200 expression is induced by IFN-γ and TNF-α in a NF-kappaB, STAT1 and IRF-1 dependent manner [7]

Soluble form

Soluble CD200 (sCD200) is present in serum. It was shown that elevated levels of serum sCD200 are associated with adverse tumor prognosis in chronic lymphocytic leukemia, glioblastoma multiforme, ependymoma and medulloblastoma. Furthermore, sCD200 is associated with the expansion of myeloid-derived suppressor cells in patients with glioblastoma multiforme. [8]

Truncated form

Truncated CD200 (CD200tr) is a truncated version of CD200 produced by alternative splicing mechanism. CD200tr lacks approximately 30 amino acids in the NH2-terminal sequence. It was shown that CD200tr acts as a competitive inhibitor to the full length CD200. [7]

Function

CD200 interacts with its receptor CD200R and leads to immunosuppressive signalization. CD200R is strongly expressed on macrophages, neutrophils and mast cells as well as on some subtypes of B lymphocytes and T lymphocytes. In the tumor microenvironment CD200R is expressed on tumor-associated myeloid cells, particularly in tumor-associate macrophages, myeloid-derived suppressor cells, tumor-associated dendritic cells and also in regulatory T lymphocytes. [9] [8]

CD200-CD200R engagement inhibits T-cell immune response, shifts cytokine profile towards Th2 type response, decreases NK cell cytotoxic activity, promotes indoleamin-2,3 dioxygenase production in macrophages and triggers regulatory T cell expansion. CD200 on dendritic and lymphoid effector cells modulates the activation threshold of inflammatory response and thus contributes to the maintenance of self-tolerance. [7] [10] Interaction between CD200 and CD200R results in a down-regulation of basophils function and inhibits lytic function of NK cells. In IFN-γ and TNF-α producing macrophages, CD200-CD200R interaction leads to inhibition of function through Dok2 and RasGAP dependent mechanism. Elevated expression of CD200R on macrophages is associated with alternative activation of macrophages to M2 phenotype. [7]

Mechanism of action

The engagement of CD200 to CD200R leads to tyrosine phosphorylation on CD200R cytomplasmatic PTB domain. This leads to a recruitment of adaptor proteins DOK-1 and DOK-2 that promotes binding of SHIP to DOK-1 and the recruitment of RasGAP which negatively regulates the MAPK/ERK signaling pathway. This signaling leads to the inhibition of proinflammatory cytokine release and inhibition of immune cell activation and suppression of mast cell degranulation. [8]

Clinical significance

Pathogens modulate CD200-CD200R axis

CD200-encoding gene has been acquired by a number of viruses infecting animals as well as human, for example some human herpesviruses.

KSHV, also known as human herpesvirus-8 is, essential for the development of Kaposi sarcoma. This virus produces an ortholog of CD200, known as viral OX2 (vOX2), a 55 kDa protein. This gene is expressed on the surface of infected cells during viral replicative state. vOX-2 has an approximately 40% sequence similarity with the human gene for CD200 but shares key residues with CD200 in its binding site for CD200R. Due to its ability to engage CD200R, vOX2 can target host immune cells (T lymphocytes, macrophages, neutrophils, basophils) and inhibit anti-viral activity. Particularly, vOX2 is capable of decreasing production of TNF-α, IFN-γ from macrophages and T lymphocytes and the CD170a-dependent activation of NK cells.

Leishmania amazonensis induces expression of CD200 in the bone marrow macrophages a thus inhibits neighboring macrophages expressing CD200R that inhibits NO production during infection. Infection with Taenia crassiceps and Trypanosoma brucei brucei leads to an overexpression of CD200R on M2 macrophages and consequently to the inhibition of innate immunity response. [7]

Rat cytomegalovirus also express CD200 ortholog known as e127 protein interacts with CD200R. e127 protein is expressed on the surface of infected cells. [8]

In cancer

CD200 is overexpressed in cancer cells in a number of human tumors including melanoma, ovarian cancer, some B-cell malignances and small cell lung carcinoma. In the tumor microenvironment CD200 is also expressed in endothelial cells and activated T lymphocytes, B lymhocytes and myeloid cells. These cells can thus interact with cells expressing CD200R such as T regulatory cells, tumor-associated dendritic cells, tumor associated macrophages and myeloid derived suppressor cells (MDSC). It was shown that CD200 expressed on tumor cells promotes expansion of MDSCs that are capable of inhibiting anti-tumor immune response. CD200 blockade inhibits tumor growth and decreases number of MDSCs in tumor tissue. [7]

The exact relationship between CD200 and cancer development, as well as its impact on disease prognosis, remains unclear and appears to vary depending on the type of tumor. [9]

In transplantation

It was shown that in animal models CD200 prolongs allograft survival. This effect is associated with polarization of cytokine response towards increased production of type-2 cytokines and decreased production of type-1 cytokines. In in vitro experiments, allostimulated cells in the presence of CD200 decreased their cytotoxic function in TGF-β and IL-10 dependent mechanism. [7]

As a drug target

Samalizumab, recombinant humanized monoclonal antibody targeting CD200 was tested in patients with chronic lymphocytic leukemia (CLL) and multiple myeloma as a phase I study. Samalizumab treatments showed a dose-dependent decrease in CD200 expression on CLL cells and decreased frequencies of circulating CD200+ CD4+ T lymphocytes in a majority of CLL patients and in multiple myeloma patients. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">RANKL</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor kappa-Β ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF), is a protein that in humans is encoded by the TNFSF11 gene.

<span class="mw-page-title-main">Interleukin 29</span> Protein-coding gene in the species Homo sapiens

Interleukin-29 (IL-29) is a cytokine and it belongs to type III interferons group, also termed interferons λ (IFN-λ). IL-29 plays an important role in the immune response against pathogenes and especially against viruses by mechanisms similar to type I interferons, but targeting primarily cells of epithelial origin and hepatocytes.

<span class="mw-page-title-main">CCL18</span> Mammalian protein found in Homo sapiens

Chemokine ligand 18 (CCL18) is a small cytokine belonging to the CC chemokine family. The functions of CCL18 have been well studied in laboratory settings, however the physiological effects of the molecule in living organisms have been difficult to characterize because there is no similar protein in rodents that can be studied. The receptor for CCL18 has been identified in humans only recently, which will help scientists understand the molecule's role in the body.

<span class="mw-page-title-main">Toll-like receptor 4</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 4 is a protein that in humans is encoded by the TLR4 gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an intracellular signaling pathway NF-κB and inflammatory cytokine production which is responsible for activating the innate immune system.

<span class="mw-page-title-main">PD-L1</span> Mammalian protein found in Homo sapiens

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.

<span class="mw-page-title-main">GPR84</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 84 is a protein that in humans is encoded by the GPR84 gene.

<span class="mw-page-title-main">CD47</span> Protein-coding gene in humans

CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.

<span class="mw-page-title-main">AXL receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase receptor UFO is an enzyme that in humans is encoded by the AXL gene. The gene was initially designated as UFO, in allusion to the unidentified function of this protein. However, in the years since its discovery, research into AXL's expression profile and mechanism has made it an increasingly attractive target, especially for cancer therapeutics. In recent years, AXL has emerged as a key facilitator of immune escape and drug-resistance by cancer cells, leading to aggressive and metastatic cancers.

<span class="mw-page-title-main">NT5E</span> Convert AMP to adenosine.

5′-nucleotidase (5′-NT), also known as ecto-5′-nucleotidase or CD73, is an enzyme that in humans is encoded by the NT5E gene. CD73 commonly serves to convert AMP to adenosine.

<span class="mw-page-title-main">HAVCR2</span> Protein-coding gene in the species Homo sapiens

Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3)gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.

<span class="mw-page-title-main">MARCO</span> Protein-coding gene in the species Homo sapiens

Macrophage receptor with collagenous structure (MARCO) is a protein that in humans is encoded by the MARCO gene. MARCO is a class A scavenger receptor that is found on particular subsets of macrophages. Scavenger receptors are pattern recognition receptors (PRRs) found most commonly on immune cells. Their defining feature is that they bind to polyanions and modified forms of a type of cholesterol called low-density lipoprotein (LDL). MARCO is able to bind and phagocytose these ligands and pathogen-associated molecular patterns (PAMPs), leading to the clearance of pathogens and cell signaling events that lead to inflammation. As part of the innate immune system, MARCO clears, or scavenges, pathogens, which leads to inflammatory responses. The scavenger receptor cysteine-rich (SRCR) domain at the end of the extracellular side of MARCO binds ligands to activate the subsequent immune responses. MARCO expression on macrophages has been associated with tumor development and also with Alzheimer's disease, via decreased responses of cells when ligands bind to MARCO.

<span class="mw-page-title-main">CD200R1</span> Protein-coding gene in the species Homo sapiens

Cell surface transmembrane glycoprotein CD200 receptor 1 is a protein that in humans is encoded by the CD200R1 gene. CD200R1 is expressed on the surface of myeloid cells and CD4+ T cells. It interacts with CD200 transmembrane glycoprotein that can be expressed on variety of cells including neurons, epithelial cells, endothelial cells, fibroblasts, and lymphoid cells.

Signaling lymphocytic activation molecule (SLAM) is a family of genes. Homophilic binding between SLAMs is involved in cell-to-cell adhesion during antigen presentation.

<span class="mw-page-title-main">CLEC12A</span> Protein-coding gene in humans

C-type lectin domain family 12 member A is a protein that in humans is encoded by the CLEC12A gene.

Tumor-associated macrophages (TAMs) are a class of immune cells present in high numbers in the microenvironment of solid tumors. They are heavily involved in cancer-related inflammation. Macrophages are known to originate from bone marrow-derived blood monocytes or yolk sac progenitors, but the exact origin of TAMs in human tumors remains to be elucidated. The composition of monocyte-derived macrophages and tissue-resident macrophages in the tumor microenvironment depends on the tumor type, stage, size, and location, thus it has been proposed that TAM identity and heterogeneity is the outcome of interactions between tumor-derived, tissue-specific, and developmental signals.

<span class="mw-page-title-main">Tumor microenvironment</span> Surroundings of tumors including nearby cells and blood vessels

The tumor microenvironment (TME) is the environment around a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). The tumor and the surrounding microenvironment are closely related and interact constantly. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage.

<span class="mw-page-title-main">Immune checkpoint</span> Regulators of the immune system

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.

<span class="mw-page-title-main">Bacterial therapy</span>

Bacterial therapy is the therapeutic use of bacteria to treat diseases. Bacterial therapeutics are living medicines, and may be wild type bacteria or bacteria that have been genetically engineered to possess therapeutic properties that is injected into a patient. Other examples of living medicines include cellular therapeutics, activators of anti-tumor immunity, or synergizing with existing tools and approaches. and phage therapeutics, or as delivery vehicles for treatment, diagnosis, or imaging, complementing or synergizing with existing tools and approaches.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000091972 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022661 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "P41217 (OX2G_HUMAN)". Uniprot. Retrieved 16 May 2013.
  6. 1 2 "Entrez Gene: CD200 CD200 molecule".
  7. 1 2 3 4 5 6 7 8 9 10 Kotwica-Mojzych K, Jodłowska-Jędrych B, Mojzych M (February 2021). "CD200:CD200R Interactions and Their Importance in Immunoregulation". International Journal of Molecular Sciences. 22 (4): 1602. doi: 10.3390/ijms22041602 . PMC   7915401 . PMID   33562512.
  8. 1 2 3 4 5 Choe D, Choi D (2023). "Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade". Frontiers in Oncology. 13: 1088038. doi: 10.3389/fonc.2023.1088038 . PMC   9900175 . PMID   36756156.
  9. 1 2 Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF (2020). "CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy". In Birbrair A (ed.). Tumor Microenvironment. Advances in Experimental Medicine and Biology. Vol. 1223. Cham: Springer International Publishing. pp. 155–165. doi:10.1007/978-3-030-35582-1_8. ISBN   978-3-030-35581-4. PMC   7339106 . PMID   32030689.
  10. 1 2 Mahadevan D, Lanasa MC, Farber C, Pandey M, Whelden M, Faas SJ, et al. (August 2019). "Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200". Journal for Immunotherapy of Cancer. 7 (1): 227. doi: 10.1186/s40425-019-0710-1 . PMC   6708181 . PMID   31443741.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.