B-cell activating factor

Last updated
TNFSF13B
Protein TNFSF13B PDB 1jh5.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TNFSF13B , BAFF, BLYS, CD257, DTL, TALL-1, TALL1, THANK, TNFSF20, ZTNF4, TNLG7A, tumor necrosis factor superfamily member 13b, TNF superfamily member 13b
External IDs OMIM: 603969 MGI: 1344376 HomoloGene: 48443 GeneCards: TNFSF13B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001145645
NM_006573

NM_033622
NM_001347309

RefSeq (protein)

NP_001139117
NP_006564

NP_001334238
NP_296371

Location (UCSC) Chr 13: 108.25 – 108.31 Mb Chr 8: 10.06 – 10.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

B-cell activating factor (BAFF) also known as tumor necrosis factor ligand superfamily member 13B and CD257 among other names, is a protein that in humans is encoded by the TNFSF13B gene. [5] [6] BAFF is also known as B Lymphocyte Stimulator (BLyS) and TNF- and APOL-related leukocyte expressed ligand (TALL-1) and the Dendritic cell-derived TNF-like molecule (CD257 antigen; cluster of differentiation 257).

Structure and function

BAFF is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This cytokine is a ligand for receptors TNFRSF13B/TACI, TNFRSF17/BCMA, and TNFRSF13C/BAFF-R. This cytokine is expressed in B cell lineage cells, and acts as a potent B cell activator. It has been also shown to play an important role in the proliferation and differentiation of B cells. [7]

BAFF is a 285-amino acid long peptide glycoprotein which undergoes glycosylation at residue 124. It is expressed as a membrane-bound type II transmembrane protein [6] on various cell types including monocytes, dendritic cells and bone marrow stromal cells. The transmembrane form can be cleaved from the membrane, generating a soluble protein fragment. BAFF steady-state concentrations depend on B cells and also on the expression of BAFF-binding receptors. [8] BAFF is the natural ligand of three nonconventional tumor necrosis factor receptors named BAFF-R (BR3), TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor), and BCMA (B-cell maturation antigen), all of which have differing binding affinities for it. These receptors are expressed mainly on mature B lymphocytes and their expression varies in dependence of B cell maturation (TACI is also found on a subset of T-cells and BCMA on plasma cells). BAFF-R is involved in the positive regulation during B cell development. [9] TACI binds worst since its affinity is higher for a protein similar to BAFF, called a proliferation-inducing ligand (APRIL). BCMA displays an intermediate binding phenotype and will work with either BAFF or APRIL to varying degrees. Signaling through BAFF-R and BCMA stimulates B lymphocytes to undergo proliferation and to counter apoptosis. All these ligands act as homotrimers (i.e. three of the same molecule) interacting with homotrimeric receptors, [10] although BAFF has been known to be active as either a hetero- or homotrimer (can aggregate into 60-mer depending on the primary structure of the protein). [11]

Interactions

B-cell activating factor has been shown to interact with TNFRSF13B, [12] [13] TNFSF13, [14] TNFRSF13C, [15] [16] and TNFRSF17. [17] [18]

Interaction between BAFF and BAFF-R activates classical and noncanonical NF-κB signaling pathways. This interaction triggers signals essential for the formation and maintenance of B cell, thus it is important for a B-cell survival. [8]

Recombinant production

Human BLyS has been expressed and purified in E. Coli. The BLyS protein in the engineered bacteria can be as much as 50% to the bacteria's total protein content and still retains activity after a purification procedure. [19]

Clinical significance

As an immunostimulant, BAFF (BLyS, TALL-1) is necessary for maintaining normal immunity. Inadequate level of BAFF will fail to activate B cells to produce enough immunoglobulin and will lead to immunodeficiency.

Excessive level of BAFF causes abnormally high antibody production, results in systemic lupus erythematosus, rheumatoid arthritis, and many other autoimmune diseases. [20] Overexpression of BAFF also correlates with enhanced humoral immunity against malaria infection. [21]

Belimumab (Benlysta) is a monoclonal antibody developed by Human Genome Sciences and GlaxoSmithKline, with significant discovery input by Cambridge Antibody Technology, which specifically recognizes and inhibits the biological activity of B-Lymphocyte stimulator (BLyS) and is in clinical trials for treatment of Systemic lupus erythematosus and other autoimmune diseases. [22]

BAFF has been found in renal transplant biopsies with acute rejection and correlate with appearance C4d. [23] Increased levels of BAFF may initiate alloreactive B cell and T cell immunity, therefore may promote allograft rejection. Lower level of BAFF transcripts (or a higher level of soluble BAFF) show a higher risk of producing donor-specific antibodies in the investigated patients. Donor-specific antibodies bind with high affinity to the vascular endothelium of graft and activate complement. This process result in neutrophils infiltration, hemorrhage, fibrin deposition and platelet aggregation. [24] Targeting BAFF-R interactions may provide new therapeutic possibilities in transplantation.

Blisibimod, a fusion protein inhibitor of BAFF, is in development by Anthera Pharmaceuticals, also primarily for the treatment of systemic lupus erythematosus. [25]

BAFF may also be a new mediator of food-related inflammation. [26] Higher levels of BAFF are present in non-atopic compared with atopic patients, and there is not any correlation between BAFF and IgE, suggesting that BAFF might be particularly involved in non-IgE-mediated reactions. [27] In patients with celiac disease, serum BAFF levels are reduced after a gluten-free diet. [28] The same reduction could be present in the recently defined “Non Celiac Gluten sensitivity” (a reaction to gluten which provokes almost the same symptoms of celiac disease and could involve up to 20% of apparently healthy individuals. [29] [30] ) BAFF is also a specific inducer of insulin resistance and can be a strong link between inflammation and diabetes or obesity. [31] [32] BAFF gives the organism a sort of danger signal and usually, according to the evolutionary theories, every human being responds to danger activating thrifty genes in order to store fat and to avoid starvation. BAFF shares many activities with PAF (Platelet Activating Factor) and they are both markers of non-IgE-mediated reactions in food-reactivity. [27]

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

Lymphotoxin is a member of the tumor necrosis factor (TNF) superfamily of cytokines, whose members are responsible for regulating the growth and function of lymphocytes and are expressed by a wide variety of cells in the body.

<span class="mw-page-title-main">CD134</span> Protein-coding gene in humans

Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), also known as CD134 and OX40 receptor, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naïve T cells, unlike CD28. OX40 is a secondary co-stimulatory immune checkpoint molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell; without CD28, expression of OX40 is delayed and of fourfold lower levels.

<span class="mw-page-title-main">Belimumab</span> Pharmaceutical drug

Belimumab, sold under the brand name Benlysta, is a human monoclonal antibody that inhibits B-cell activating factor (BAFF), also known as B-lymphocyte stimulator (BLyS). It is approved in the United States and Canada, and the European Union to treat systemic lupus erythematosus and lupus nephritis.

CD70 is a protein that in humans is encoded by CD70 gene. CD70 is also known as a ligand for CD27.

<span class="mw-page-title-main">CD137</span> Member of the tumor necrosis factor (TNF) receptor family

CD137, a member of the tumor necrosis factor (TNF) receptor family, is a type 1 transmembrane protein, expressed on surfaces of leukocytes and non-immune cells. Its alternative names are tumor necrosis factor receptor superfamily member 9 (TNFRSF9), 4-1BB, and induced by lymphocyte activation (ILA). It is of interest to immunologists as a co-stimulatory immune checkpoint molecule, and as a potential target in cancer immunotherapy.

<span class="mw-page-title-main">Lymphotoxin alpha</span> Protein found in humans

Lymphotoxin-alpha (LT-α) formerly known as tumor necrosis factor-beta (TNF-β) is a protein that in humans is encoded by the LTA gene. Belonging to the hematopoietic cell line, LT-α exhibits anti-proliferative activity and causes the cellular destruction of tumor cell lines. As a cytotoxic protein, LT-α performs a variety of important roles in immune regulation depending on the form that it is secreted as. Unlike other members of the TNF superfamily, LT-α is only found as a soluble homotrimer, when found at the cell surface it is found only as a heterotrimer with LTβ.

<span class="mw-page-title-main">APRIL (protein)</span> Protein-coding gene in the species Homo sapiens

A proliferation-inducing ligand (APRIL), also known as tumor necrosis factor ligand superfamily member 13 (TNFSF13), is a protein of the TNF superfamily recognized by the cell surface receptor TACI. It is encoded by the TNFSF13 gene.

<span class="mw-page-title-main">LIGHT (protein)</span> Secreted protein of the TNF superfamily

LIGHT, also known as tumor necrosis factor superfamily member 14 (TNFSF14), is a secreted protein of the TNF superfamily. It is recognized by herpesvirus entry mediator (HVEM), as well as decoy receptor 3.

<span class="mw-page-title-main">Transmembrane activator and CAML interactor</span> Protein-coding gene in the species Homo sapiens

Transmembrane activator and CAML interactor (TACI), also known as tumor necrosis factor receptor superfamily member 13B (TNFRSF13B) is a protein that in humans is encoded by the TNFRSF13B gene.

<span class="mw-page-title-main">BAFF receptor</span> Mammalian protein found in Homo sapiens

BAFF receptor, also known as tumor necrosis factor receptor superfamily member 13C (TNFRSF13C) and BLyS receptor 3 (BR3), is a membrane protein of the TNF receptor superfamily which recognizes BAFF, an essential factor for B cell maturation and survival. In humans it is encoded by the TNFRSF13C gene.

<span class="mw-page-title-main">Death receptor 3</span> Protein found in humans

Death receptor 3 (DR3), also known as tumor necrosis factor receptor superfamily member 25 (TNFRSF25), is a cell surface receptor of the tumor necrosis factor receptor superfamily which mediates apoptotic signalling and differentiation. Its only known TNFSF ligand is TNF-like protein 1A (TL1A).

<span class="mw-page-title-main">Vascular endothelial growth inhibitor</span> Protein-coding gene in the species Homo sapiens

Vascular endothelial growth inhibitor (VEGI), also known as TNF-like ligand 1A (TL1A) and TNF superfamily member 15 (TNFSF15), is protein that in humans is encoded by the TNFSF15 gene. VEGI is an anti-angiogenic protein. It belongs to tumor necrosis factor (ligand) superfamily, where it is member 15. It is the sole known ligand for death receptor 3, and it can also be recognized by decoy receptor 3.

<span class="mw-page-title-main">B-cell maturation antigen</span> Protein-coding gene in the species Homo sapiens

B-cell maturation antigen, also known as tumor necrosis factor receptor superfamily member 17 (TNFRSF17), is a protein that in humans is encoded by the TNFRSF17 gene.

<span class="mw-page-title-main">TNFRSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced TNFR-related protein (GITR) or CD357. GITR is encoded and tnfrsf18 gene at chromosome 4 in mice. GITR is type I transmembrane protein and is described in 4 different isoforms. GITR human orthologue, also called activation-inducible TNFR family receptor (AITR), is encoded by the TNFRSF18 gene at chromosome 1.

<span class="mw-page-title-main">TNFSF12-TNFSF13</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor (ligand) superfamily, member 12-member 13, also known as TNFSF12-TNFSF13, is a human gene.

<span class="mw-page-title-main">TACI-CRD2 protein domain</span>

In molecular biology, TACI-CRD2 represents the second cysteine-rich protein domain found in the TACI family of proteins. Members of this family are predominantly found in tumour necrosis factor receptor superfamily, member 13b (TACI), and are required for binding to the ligands APRIL and BAFF. TACI-CRD2 stands for Transmembrane Activator and CAML Interactor- Cysteine Rich Domain 2.

<span class="mw-page-title-main">Serum B-cell maturation antigen</span> Cleaved form of B-cell maturation antigen

Serum B-cell maturation antigen (sBCMA) is the cleaved form of B-cell maturation antigen (BCMA), found at low levels in the serum of normal patients and generally elevated in patients with multiple myeloma (MM). Changes in sBCMA levels have been found to correlate with a MM patient’s clinical status in response to treatment.

Fabienne Mackay is a French Australian research immunologist and institutional leader within the Australian medical research, education and innovation sectors. She is the Director and CEO of the QIMR Berghofer Medical Research Institute since 2020, after being the inaugural Head of the School of Biomedical Sciences at the University of Melbourne during the preceding five years. She is also an Honorary Professor at the Faculties of Medicine of the University of Queensland and the University of Melbourne. Her work has attracted public attention for its contribution to the pathophysiological understanding and treatment of lupus and other autoimmune diseases. Mackay has been notably awarded, achieving international reputation for her widely cited research describing B-cell activating factor (BAFF) and other cytokines of the TNF receptor superfamily, and their roles in B cell physiology, autoimmunity and cancer. She is an elected Fellow of the Australian Academy of Health and Medical Sciences.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000102524 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031497 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Shu HB, Hu WH, Johnson H (May 1999). "TALL-1 is a novel member of the TNF family that is down-regulated by mitogens". Journal of Leukocyte Biology. 65 (5): 680–3. doi:10.1002/jlb.65.5.680. PMID   10331498. S2CID   1498303.
  6. 1 2 Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J (June 1999). "BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth". The Journal of Experimental Medicine. 189 (11): 1747–56. doi:10.1084/jem.189.11.1747. PMC   2193079 . PMID   10359578.
  7. "Entrez Gene: tumor necrosis factor (ligand) superfamily".
  8. 1 2 Kreuzaler M, Rauch M, Salzer U, Birmelin J, Rizzi M, Grimbacher B, Plebani A, Lougaris V, Quinti I, Thon V, Litzman J, Schlesier M, Warnatz K, Thiel J, Rolink AG, Eibel H (January 2012). "Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors". Journal of Immunology. 188 (1): 497–503. doi: 10.4049/jimmunol.1102321 . PMID   22124120.
  9. Thibault-Espitia A, Foucher Y, Danger R, Migone T, Pallier A, Castagnet S, G-Gueguen C, Devys A, C-Gautier A, Giral M, Soulillou JP, Brouard S (October 2012). "BAFF and BAFF-R levels are associated with risk of long-term kidney graft dysfunction and development of donor-specific antibodies". American Journal of Transplantation. 12 (10): 2754–62. doi: 10.1111/j.1600-6143.2012.04194.x . PMID   22883025. S2CID   29060390.
  10. Oren DA, Li Y, Volovik Y, Morris TS, Dharia C, Das K, Galperina O, Gentz R, Arnold E (April 2002). "Structural basis of BLyS receptor recognition". Nature Structural Biology. 9 (4): 288–92. doi:10.1038/nsb769. PMID   11862220. S2CID   24498929.
  11. Daridon C, Youinou P, Pers JO (February 2008). "BAFF, APRIL, TWE-PRIL: who's who?". Autoimmunity Reviews. 7 (4): 267–71. doi:10.1016/j.autrev.2007.05.002. PMID   18295728.
  12. Yan M, Marsters SA, Grewal IS, Wang H, Ashkenazi A, Dixit VM (July 2000). "Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity". Nature Immunology. 1 (1): 37–41. doi:10.1038/76889. PMID   10881172. S2CID   22957179.
  13. Xia XZ, Treanor J, Senaldi G, Khare SD, Boone T, Kelley M, Theill LE, Colombero A, Solovyev I, Lee F, McCabe S, Elliott R, Miner K, Hawkins N, Guo J, Stolina M, Yu G, Wang J, Delaney J, Meng SY, Boyle WJ, Hsu H (July 2000). "TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation". The Journal of Experimental Medicine. 192 (1): 137–43. doi:10.1084/jem.192.1.137. PMC   1887716 . PMID   10880535.
  14. Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, Stohl W, Baker KP, Ullrich S, Nardelli B, Hilbert DM, Migone TS (October 2002). "BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases". Journal of Immunology. 169 (8): 4314–21. doi: 10.4049/jimmunol.169.8.4314 . PMID   12370363.
  15. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C, Strauch K, Zafari M, Benjamin CD, Tschopp J, Browning JL, Ambrose C (September 2001). "BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF". Science. 293 (5537): 2108–11. Bibcode:2001Sci...293.2108T. doi: 10.1126/science.1061965 . PMID   11509692. S2CID   42673198.
  16. Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, Cancro M, Grewal IS, Dixit VM (October 2001). "Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency". Current Biology. 11 (19): 1547–52. Bibcode:2001CBio...11.1547Y. doi: 10.1016/S0960-9822(01)00481-X . PMID   11591325. S2CID   13925100.
  17. Liu Y, Hong X, Kappler J, Jiang L, Zhang R, Xu L, Pan CH, Martin WE, Murphy RC, Shu HB, Dai S, Zhang G (May 2003). "Ligand-receptor binding revealed by the TNF family member TALL-1". Nature. 423 (6935): 49–56. Bibcode:2003Natur.423...49L. doi: 10.1038/nature01543 . PMID   12721620. S2CID   4373708.
  18. Shu HB, Johnson H (August 2000). "B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1". Proceedings of the National Academy of Sciences of the United States of America. 97 (16): 9156–61. Bibcode:2000PNAS...97.9156S. doi: 10.1073/pnas.160213497 . PMC   16838 . PMID   10908663.
  19. Tian RY, Han W, Yu Y, Chen Y, Yu GS, Yang SL, Gong Y (December 2003). "[The immunopotentiation of human B lymphocyte stimulator C-terminal peptide]". Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica et Biophysica Sinica. 35 (12): 1128–32. PMID   14673506.
  20. Steri M, Orrù V, Idda ML, Pitzalis M, Pala M, Zara I, et al. (April 2017). "Overexpression of the Cytokine BAFF and Autoimmunity Risk". The New England Journal of Medicine. 376 (17): 1615–1626. doi:10.1056/nejmoa1610528. PMC   5605835 . PMID   28445677.
  21. Korn T, Oukka M (April 2017). "A BAFFling Association between Malaria Resistance and the Risk of Multiple Sclerosis". The New England Journal of Medicine. 376 (17): 1680–1681. doi:10.1056/nejme1700720. PMC   6342012 . PMID   28445672.
  22. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, León MG, Tanasescu C, Nasonov E, Lan JL, Pineda L, Zhong ZJ, Freimuth W, Petri MA (February 2011). "Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial". Lancet. 377 (9767): 721–31. doi:10.1016/S0140-6736(10)61354-2. PMID   21296403. S2CID   28952240.
  23. Banham G, Prezzi D, Harford S, Taylor CJ, Hamer R, Higgins R, Bradley JA, Clatworthy MR (August 2013). "Elevated pretransplantation soluble BAFF is associated with an increased risk of acute antibody-mediated rejection". Transplantation. 96 (4): 413–20. doi:10.1097/TP.0b013e318298dd65. PMC   4170143 . PMID   23842189.
  24. Wasowska BA (July 2010). "Mechanisms involved in antibody- and complement-mediated allograft rejection". Immunologic Research. 47 (1–3): 25–44. doi:10.1007/s12026-009-8136-3. PMC   2892186 . PMID   20135240.
  25. ClinicalTrials.gov. "PEARL-SC Trial: A Study of the Efficacy, Safety, and Tolerability of A 623 Administration in Subjects With Systemic Lupus Erythematosus". United States National Institute of Health. Retrieved 2011-07-15.
  26. Lied GA, Berstad A (January 2011). "Functional and clinical aspects of the B-cell-activating factor (BAFF): a narrative review". Scandinavian Journal of Immunology. 73 (1): 1–7. doi: 10.1111/j.1365-3083.2010.02470.x . PMID   21128997.
  27. 1 2 Büchler JR, Cano MN (January 1986). "Double outlet right ventricle and left-sided aorta. A previously undescribed association with cor triatriatum and double right ventricular chamber". Japanese Heart Journal. 27 (1): 117–22. doi: 10.1186/2045-7022-3-S3-O5 . PMC   3723786 . PMID   3723786.
  28. Fabris M, Visentini D, De Re V, Picierno A, Maieron R, Cannizzaro R, Villalta D, Curcio F, De Vita S, Tonutti E (December 2007). "Elevated B cell-activating factor of the tumour necrosis factor family in coeliac disease". Scandinavian Journal of Gastroenterology. 42 (12): 1434–9. doi:10.1080/00365520701452225. PMID   17852877. S2CID   44676344.
  29. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (February 2012). "Spectrum of gluten-related disorders: consensus on new nomenclature and classification". BMC Medicine. 10: 13. doi: 10.1186/1741-7015-10-13 . PMC   3292448 . PMID   22313950.
  30. Aziz I, Hadjivassiliou M, Sanders DS (November 2012). "Does gluten sensitivity in the absence of coeliac disease exist?". BMJ. 345: e7907. doi:10.1136/bmj.e7907. PMID   23204002. S2CID   206896710.
  31. Kim YH, Choi BH, Cheon HG, Do MS (March 2009). "B cell activation factor (BAFF) is a novel adipokine that links obesity and inflammation". Experimental & Molecular Medicine. 41 (3): 208–16. doi:10.3858/emm.2009.41.3.024. PMC   2679246 . PMID   19293640.
  32. Hamada M, Abe M, Miyake T, Kawasaki K, Tada F, Furukawa S, Matsuura B, Hiasa Y, Onji M (October 2011). "B cell-activating factor controls the production of adipokines and induces insulin resistance". Obesity. 19 (10): 1915–22. doi: 10.1038/oby.2011.165 . PMID   21701571.

Further reading