Interleukin 28A | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | IL28A | ||||||
Alt. symbols | IFNL2 | ||||||
NCBI gene | 282616 | ||||||
HGNC | 18364 | ||||||
OMIM | 607401 | ||||||
RefSeq | NM_172138 | ||||||
UniProt | Q8IZJ0 | ||||||
Other data | |||||||
Locus | Chr. 19 q13.13 | ||||||
|
Interleukin 28B | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | IL28B | ||||||
Alt. symbols | IFNL3 | ||||||
NCBI gene | 282617 | ||||||
HGNC | 18365 | ||||||
OMIM | 607402 | ||||||
RefSeq | NM_172139 | ||||||
UniProt | Q8IZI9 | ||||||
Other data | |||||||
Locus | Chr. 19 q13.13 | ||||||
|
Interleukin-28 (IL-28) is a cytokine that comes in two isoforms, IL-28A and IL-28B, and plays a role in immune defense against viruses, including the induction of an "antiviral state" by turning on Mx proteins, 2',5'-oligoadenylate synthetase as well as ISGF3G (Interferon Stimulated Gene Factor 3). [1] IL-28A and IL-28B belong to the type III interferon family of cytokines and are highly similar (in amino acid sequence) to IL-29. Their classification as Interferons is due to their ability to induce an antiviral state, while their additional classification as cytokines is due to their chromosomal location as well as the fact that they are encoded by multiple exons, as opposed to a single exon, as most type-I IFNs are.
IL-28 was discovered in 2002 by Zymogenetics [2] using a genomic screening process in which the entire human genome was scanned for putative genes. Once these genes were found, a second scan was performed to look specifically for cytokines. Both IL-28 and IL-29 were found in humans using this type of analysis.
IL-28 genes are located near IL-29 on chromosome 19 in humans. The two isoforms of IL-28 (IL-28A and IL-28B) are 96% homologous. Differences in function between the two forms remains unclear.
The receptor for IL-28 is composed of a unique IL-28 Receptor Alpha chain which pairs with the IL-10 Receptor Beta chain, leading many to classify IL-28 as an IL-10-like family member.
IL-28 has also been shown to play a role in the adaptive immune response, as its inclusion as an immunoadjuvant during small animal vaccination lead to augmented antigen-specific Interferon Gamma release as well as an increased cytotoxic potential in CD8+ T cells. [3]
Addition of IL-28 to vaccination results in 100% protection from a lethal H1N1 Influenza challenge in a small animal model when it was paired with an Influenza vaccine that protected only 50% of the time without IL-28. [3]
Studies of IL-28B in non-human primate models of vaccination confirmed the small animal models, leading to an increase in Interferon Gamma production and CD8+ T cell activity in the form of cytotoxicity in an HIV vaccine study. [4] Scientists have credited this link to explain why some people infected with HSV-1 experience cold sores, while others do not.
A single nucleotide polymorphism (SNP) near the IL28B gene predicts response to hepatitis C treatment with interferon and ribavirin. [5] [6] The SNP was identified in a genome-wide association study (GWAS) and is to date the best example of a successful GWAS hit that is clinically relevant. [7]
Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.
A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response.
Cytokines are a broad and loose category of small proteins important in cell signaling. Due to their size, cytokines cannot cross the lipid bilayer of cells to enter the cytoplasm and therefore typically exert their functions by interacting with specific cytokine receptors on the target cell surface. Cytokines have been shown to be involved in autocrine, paracrine and endocrine signaling as immunomodulating agents.
Interleukin 10 (IL-10), also known as human cytokine synthesis inhibitory factor (CSIF), is an anti-inflammatory cytokine. In humans, interleukin 10 is encoded by the IL10 gene. IL-10 signals through a receptor complex consisting of two IL-10 receptor-1 and two IL-10 receptor-2 proteins. Consequently, the functional receptor consists of four IL-10 receptor molecules. IL-10 binding induces STAT3 signalling via the phosphorylation of the cytoplasmic tails of IL-10 receptor 1 + IL-10 receptor 2 by JAK1 and Tyk2 respectively.
Interleukin 12 (IL-12) is an interleukin that is naturally produced by dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 belongs to the family of interleukin-12. IL-12 family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects.
Interferon gamma (IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock as a product of human leukocytes stimulated with phytohemagglutinin, and by others as a product of antigen-stimulated lymphocytes. It was also shown to be produced in human lymphocytes. or tuberculin-sensitized mouse peritoneal lymphocytes challenged with Mantoux test (PPD); the resulting supernatants were shown to inhibit growth of vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed IFN-γ release assay used to test for tuberculosis. In humans, the IFN-γ protein is encoded by the IFNG gene.
Interferon tau is a Type I interferon made of a single chain of amino acids. IFN-τ was first discovered in ruminants as the signal for the maternal recognition of pregnancy and originally named ovine trophoblast protein-1 (oTP-1). It has many physiological functions in the mammalian uterus, and also has anti-inflammatory effect that aids in the protection of the semi-allogeneic conceptus trophectoderm from the maternal immune system.
Interleukin-15 (IL-15) is a protein that in humans is encoded by the IL15 gene. IL-15 is an inflammatory cytokine with structural similarity to Interleukin-2 (IL-2). Like IL-2, IL-15 binds to and signals through a complex composed of IL-2/IL-15 receptor beta chain (CD122) and the common gamma chain. IL-15 is secreted by mononuclear phagocytes following infection by virus(es). This cytokine induces the proliferation of natural killer cells, i.e. cells of the innate immune system whose principal role is to kill virally infected cells.
Interleukin-29 (IL-29) is a cytokine and it belongs to type III interferons group, also termed interferons λ (IFN-λ). IL-29 plays an important role in the immune response against pathogenes and especially against viruses by mechanisms similar to type I interferons, but targeting primarily cells of epithelial origin and hepatocytes.
Interleukin-26 (IL-26) is a protein that in humans is encoded by the IL26 gene.
The type-I interferons (IFN) are cytokines which play essential roles in inflammation, immunoregulation, tumor cells recognition, and T-cell responses. In the human genome, a cluster of thirteen functional IFN genes is located at the 9p21.3 cytoband over approximately 400 kb including coding genes for IFNα, IFNω (IFNW1), IFNɛ (IFNE), IFNк (IFNK) and IFNβ (IFNB1), plus 11 IFN pseudogenes.
The type III interferon group is a group of anti-viral cytokines, that consists of four IFN-λ (lambda) molecules called IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4. They were discovered in 2003. Their function is similar to that of type I interferons, but is less intense and serves mostly as a first-line defense against viruses in the epithelium.
The interferon-α/β receptor (IFNAR) is a virtually ubiquitous membrane receptor which binds endogenous type I interferon (IFN) cytokines. Endogenous human type I IFNs include many subtypes, such as interferons-α, -β, -ε, -κ, -ω, and -ζ.
Interleukin-12 subunit alpha is a protein that in humans is encoded by the IL12A gene.
RIG-I is a cytosolic pattern recognition receptor (PRR) that can mediate induction of a type-I interferon (IFN1) response. RIG-I is an essential molecule in the innate immune system for recognizing cells that have been infected with a virus. These viruses can include West Nile virus, Japanese Encephalitis virus, influenza A, Sendai virus, flavivirus, and coronaviruses.
Interleukin 10 receptor, beta subunit is a subunit for the interleukin-10 receptor. IL10RB is its human gene.
Interleukin 37 (IL-37), also known as Interleukin-1 family member 7 (IL-1F7), is an anti-inflammatory cytokine important for the downregulation of pro-inflammatory cytokine production as well as the suppression of tumor cell growth.
Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.
Interferon lambda 3 encodes the IFNL3 protein. IFNL3 was formerly named IL28B, but the Human Genome Organization Gene Nomenclature Committee renamed this gene in 2013 while assigning a name to the then newly discovered IFNL4 gene. Together with IFNL1 and IFNL2, these genes lie in a cluster on chromosomal region 19q13. IFNL3 shares ~96% amino-acid identity with IFNL2, ~80% identity with IFNL1 and ~30% identity with IFNL4.
Interferon lambda 4 is one of the most recently discovered human genes and the newest addition to the interferon lambda protein family. This gene encodes the IFNL4 protein, which is involved in immune response to viral infection.