Siltuximab

Last updated
Siltuximab
Monoclonal antibody
Type Whole antibody
Source Chimeric (mouse/human)
Target IL-6
Clinical data
Trade names Sylvant
Other namesCNTO 328
License data
ATC code
Legal status
Legal status
Identifiers
CAS Number
ChemSpider
  • none
UNII
KEGG
Chemical and physical data
Formula C6450H9932N1688O2016S50
Molar mass 144983.21 g·mol−1
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Siltuximab (INN, trade name Sylvant; also known as CNTO 328, anti-IL-6 chimeric monoclonal antibody or cCLB8) is a chimeric (made from human and mouse proteins) monoclonal antibody. It binds to interleukin-6. [2] [3] Siltuximab has been investigated for the treatment of neoplastic diseases: [4] metastatic renal cell cancer, [5] prostate cancer, [6] other types of cancer, [7] and for Castleman's disease. [8] [9]

Contents

On April 23, 2014, siltuximab was FDA approved under the brand name of Sylvant [10] for the treatment of patients with idiopathic multicentric Castleman's disease (iMCD) who do not have human immunodeficiency virus (HIV) or human herpesvirus-8 (HHV-8). [11] [12]

Medical uses

Used for the treatment of idiopathic multicentric Castleman disease (iMCD). [13]

Clinical trials

Siltuximab has demonstrated significant efficacy and safety in patients with idiopathic multicentric Castleman disease. [14] [15] Treatment results with Siltuximab in B-cell non-Hodgkin's lymphoma are inferior to those obtained in multicentric Castleman disease. [16] Siltuximab has also been evaluated in the treatment ovarian cancer, however the efficacy for this cancer is debatable. [17] In addition, siltuximab has been evaluated for multiple myeloma, but there was an insignificant increase in response rates. [18]

Side effects

Siltuximab may lower resistance to infections and should not be administered to patients with severe infections. Siltuximab should be discontinued in patients with severe infusion related reactions, anaphylaxis, severe allergic reactions or cytokine release syndromes. Live vaccines should not be administered to patients receiving siltuximab since IL-6 inhibition may interfere with normal immune response to new antigens. [13]

Common The following has been shown to occur in treatment of Multicentric Castleman's disease with siltuximab during a clinical trial (>10% compared to placebo): [13]

Long term exposure

Drug interactions

Siltuximab may increase CYP450 activity leading to increased metabolism of drugs that are CYP450 substrates. Co-administration of siltuximab and CYP450 substrates with narrow therapeutic index such as warfarin, ciclosporin or theophylline should be closely monitored. [13]

Mechanism of action

Siltuximab is a chimeric monoclonal antibody that binds to interleukin-6 (IL-6), preventing binding to soluble and membrane bound interleukin-6 receptors. Siltuximab interferes with IL-6 mediated growth of B-lymphocytes and plasma cells, secretion of vascular endothelial growth factor (VEGF) and autoimmune phenomena. [13]

Related Research Articles

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

<span class="mw-page-title-main">Castleman disease</span> Group of lymphoproliferative disorders

Castlemandisease (CD) describes a group of rare lymphoproliferative disorders that involve enlarged lymph nodes, and a broad range of inflammatory symptoms and laboratory abnormalities. Whether Castleman disease should be considered an autoimmune disease, cancer, or infectious disease is currently unknown.

In immunology, cytokine release syndrome (CRS) is a form of systemic inflammatory response syndrome (SIRS) that can be triggered by a variety of factors such as infections and certain drugs. It refers to cytokine storm syndromes (CSS) and occurs when large numbers of white blood cells are activated and release inflammatory cytokines, which in turn activate yet more white blood cells. CRS is also an adverse effect of some monoclonal antibody medications, as well as adoptive T-cell therapies. When occurring as a result of a medication, it is also known as an infusion reaction.

<span class="mw-page-title-main">POEMS syndrome</span> Paraneoplastic syndrome

POEMS syndrome is a rare paraneoplastic syndrome caused by a clone of aberrant plasma cells. The name POEMS is an acronym for some of the disease's major signs and symptoms, as is PEP.

<span class="mw-page-title-main">Rituximab</span> Biopharmaceutical drug

Rituximab, sold under the brand name Rituxan among others, is a monoclonal antibody medication used to treat certain autoimmune diseases and types of cancer. It is used for non-Hodgkin lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis, granulomatosis with polyangiitis, idiopathic thrombocytopenic purpura, pemphigus vulgaris, myasthenia gravis and Epstein–Barr virus-positive mucocutaneous ulcers. It is given by slow intravenous infusion. Biosimilars of Rituxan include Blitzima, Riabni, Ritemvia, Rituenza, Rixathon, Ruxience, and Truxima.

<span class="mw-page-title-main">Interleukin 6</span> Cytokine protein

Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene.

In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">Biological therapy for inflammatory bowel disease</span>

Biological therapy, the use of medications called biopharmaceuticals or biologics that are tailored to specifically target an immune or genetic mediator of disease, plays a major role in the treatment of inflammatory bowel disease. Even for diseases of unknown cause, molecules that are involved in the disease process have been identified, and can be targeted for biological therapy. Many of these molecules, which are mainly cytokines, are directly involved in the immune system. Biological therapy has found a niche in the management of cancer, autoimmune diseases, and diseases of unknown cause that result in symptoms due to immune related mechanisms.

<span class="mw-page-title-main">Monoclonal antibody therapy</span> Form of immunotherapy

Monoclonal antibodies (mAbs) have varied therapeutic uses. It is possible to create a mAb that binds specifically to almost any extracellular target, such as cell surface proteins and cytokines. They can be used to render their target ineffective, to induce a specific cell signal, to cause the immune system to attack specific cells, or to bring a drug to a specific cell type.

<span class="mw-page-title-main">Interleukin 30</span> Protein-coding gene in the species Homo sapiens

Interleukin 30 (IL-30) forms one chain of the heterodimeric cytokine called interleukin 27 (IL-27), thus it is also called IL27-p28. IL-27 is composed of α chain p28 and β chain Epstain-Barr induce gene-3 (EBI3). The p28 subunit, or IL-30, has an important role as a part of IL-27, but it can be secreted as a separate monomer and has its own functions in the absence of EBI3. The discovery of IL-30 as individual cytokine is relatively new and thus its role in the modulation of the immune response is not fully understood.

Tocilizumab, sold under the brand name Actemra among others, is an immunosuppressive drug, used for the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, a severe form of arthritis in children, and COVID‑19. It is a humanized monoclonal antibody against the interleukin-6 receptor (IL-6R). Interleukin 6 (IL-6) is a cytokine that plays an important role in immune response and is implicated in the pathogenesis of many diseases, such as autoimmune diseases, multiple myeloma and prostate cancer. Tocilizumab was jointly developed by Osaka University and Chugai, and was licensed in 2003 by Hoffmann-La Roche.

Anti-interleukin-6 agents are a class of therapeutics. Interleukin 6 is a cytokine relevant to many inflammatory diseases and many cancers. Hence, anti-IL6 agents have been sought. In rheumatoid arthritis they can help patients unresponsive to TNF inhibitors.

Carlumab is a discontinued human recombinant monoclonal antibody that targets human CC chemokine ligand 2 (CCL2)/monocyte chemoattractant protein (MCP1). Carlumab was under development for use in the treatment of oncology and immune indications and was studied for application in systemic sclerosis, atherosclerosis, diabetic nephropathy, liver fibrosis and type 2 diabetes.

Cytokine-induced killer cells (CIK) cells are a group of immune effector cells featuring a mixed T- and natural killer (NK) cell-like phenotype. They are generated by ex vivo incubation of human peripheral blood mononuclear cells (PBMC) or cord blood mononuclear cells with interferon-gamma (IFN-γ), anti-CD3 antibody, recombinant human interleukin (IL)-1 and recombinant human interleukin (IL)-2.

<span class="mw-page-title-main">HHV-8-associated MCD</span> Disease subtype

Human herpesvirus 8 associated multicentric Castleman disease is a subtype of Castleman disease, a group of rare lymphoproliferative disorders characterized by lymph node enlargement, characteristic features on microscopic analysis of enlarged lymph node tissue, and a range of symptoms and clinical findings.

<span class="mw-page-title-main">Unicentric Castleman disease</span> Medical condition

Unicentric Castleman disease is a subtype of Castleman disease, a group of lymphoproliferative disorders characterized by lymph node enlargement, characteristic features on microscopic analysis of enlarged lymph node tissue, and a range of symptoms and clinical findings.

<span class="mw-page-title-main">Idiopathic multicentric Castleman disease</span> Medical condition

Idiopathic multicentric Castleman disease (iMCD) is a subtype of Castleman disease (also known as giant lymph node hyperplasia, lymphoid hamartoma, or angiofollicular lymph node hyperplasia), a group of lymphoproliferative disorders characterized by lymph node enlargement, characteristic features on microscopic analysis of enlarged lymph node tissue, and a range of symptoms and clinical findings.

Passive antibody therapy, also called serum therapy, is a subtype of passive immunotherapy that administers antibodies to target and kill pathogens or cancer cells. It is designed to draw support from foreign antibodies that are donated from a person, extracted from animals, or made in the laboratory to elicit an immune response instead of relying on the innate immune system to fight disease. It has a long history from the 18th century for treating infectious diseases and is now a common cancer treatment. The mechanism of actions include: antagonistic and agonistic reaction, complement-dependent cytotoxicity (CDC), and antibody-dependent cellular cytotoxicity (ADCC).

References

  1. "Prescription medicines: registration of new chemical entities in Australia, 2015". Therapeutic Goods Administration (TGA). 21 June 2022. Retrieved 10 April 2023.
  2. International Nonproprietary Names for Pharmaceutical Substances (INN, prepublication copy), World Health Organization.
  3. "Siltuximab mechanism of action". HemOnc.org - A Free Hematology/Oncology Reference.
  4. Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA (January 2017). "TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis". Cytokine. 89: 127–135. doi:10.1016/j.cyto.2016.01.021. PMID   26854213.
  5. Rossi JF, Négrier S, James ND, Kocak I, Hawkins R, Davis H, et al. (October 2010). "A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer". British Journal of Cancer. 103 (8): 1154–62. doi:10.1038/sj.bjc.6605872. PMC   2967052 . PMID   20808314.
  6. Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, et al. (September 2011). "The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study". The Prostate. 71 (13): 1455–65. doi:10.1002/pros.21362. PMID   21321981. S2CID   32034042.
  7. "Siltuximab". ClinicalTrials.gov.
  8. van Rhee F, Fayad L, Voorhees P, Furman R, Lonial S, Borghaei H, et al. (August 2010). "Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease". Journal of Clinical Oncology. 28 (23): 3701–8. doi:10.1200/JCO.2009.27.2377. PMID   20625121.
  9. Williams SC (October 2013). "First IL-6-blocking drug nears approval for rare blood disorder". Nature Medicine. 19 (10): 1193. doi: 10.1038/nm1013-1193 . PMID   24100967. S2CID   29140516.
  10. "Sylvant official website".
  11. "Siltuximab approval". Food and Drug Administration . 23 April 2014. Archived from the original on 3 June 2014.
  12. "Castleman disease: Siltuximab cancer regimen & references". HemOnc.org - A Free Hematology/Oncology Reference.
  13. 1 2 3 4 5 "Sylvant Prescribing Information" (PDF). janssenmd. Retrieved 3 November 2014.
  14. Fajgenbaum DC, Kurzrock R (2016). "Siltuximab: a targeted therapy for idiopathic multicentric Castleman disease". Immunotherapy. 8 (1): 17–26. doi:10.2217/imt.15.95. PMID   26634298.
  15. Sarosiek S, Shah R, Munshi NC (December 2016). "Review of siltuximab in the treatment of multicentric Castleman's disease". Therapeutic Advances in Hematology. 7 (6): 360–366. doi:10.1177/2040620716653745. PMC   5089324 . PMID   27904739.
  16. Ferrario A, Merli M, Basilico C, Maffioli M, Passamonti F (March 2017). "Siltuximab and hematologic malignancies. A focus in non Hodgkin lymphoma". Expert Opinion on Investigational Drugs. 26 (3): 367–373. doi:10.1080/13543784.2017.1288213. PMID   28140696. S2CID   40363229.
  17. Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M (2018). "Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities". Current Medicinal Chemistry. 25 (36): 4785–4806. doi:10.2174/0929867324666170712160621. PMID   28707587. S2CID   30691176.
  18. Naymagon L, Abdul-Hay M (June 2016). "Novel agents in the treatment of multiple myeloma: a review about the future". Journal of Hematology & Oncology. 9 (1): 52. doi: 10.1186/s13045-016-0282-1 . PMC   4929712 . PMID   27363832.