This article needs additional citations for verification .(March 2024) |
Clinical data | |
---|---|
AHFS/Drugs.com | Monograph |
Routes of administration | subcutaneous (s.c.) injection |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | >80% (s.c.) |
Metabolism | mainly renal |
Elimination half-life | 6.9 ± 1.7 hours |
Identifiers | |
CAS Number | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider |
|
UNII | |
ChEMBL | |
Chemical and physical data | |
Formula | C854H1411N253O235S2 |
Molar mass | 19047.34 g·mol−1 |
(what is this?) (verify) |
Oprelvekin is recombinant interleukin eleven (IL-11), [1] a thrombopoietic growth factor that directly stimulates the proliferation of hematopoietic stem cells and megakaryocyte progenitor cells and induces megakaryocyte maturation resulting in increased platelet production. It is marketed under the trade name Neumega.
IL-11 is a member of a family of human growth factors and is being produced in the bone marrow of healthy adults. Synonyms are:
Oprelvekin is produced in Escherichia coli (E. coli) by recombinant DNA technology. The protein has a molecular mass of approximately 19,000 g/mol, and is non-glycosylated. The polypeptide is 177 amino acids in length (the natural IL-11 has 178). This alteration has not resulted in measurable differences in bioactivity either in vitro or in vivo.
The primary hematopoietic activity of Neumega is stimulation of megakaryocytopoiesis and thrombopoiesis. [2] In mice and nonhuman primate studies Neumega has shown potent thrombopoietic activity in compromised hematopoiesis, including moderately to severely myelosuppressed animals. In these studies, Neumega improved platelet nadirs and accelerated platelet recoveries compared to controls.
In animal studies oprelvekin also has non-hematopoietic activities. This includes the regulation of intestinal epithelium growth (enhanced healing of gastrointestinal lesions), the inhibition of adipogenesis, the induction of acute phase protein synthesis (e.g., fibrinogen), and inhibition of macrophageal released pro-inflammatory cytokines. However, pathologic changes, some also seen in humans, have been noticed:
In preclinical human trials mature megakaryocytes which develop during in vivo treatment with Neumega were ultrastructurally, morphologically, and functionally normal. They also showed a normal life span.
In a study in which a single 50 μg/kg subcutaneous dose was administered to eighteen healthy men, the peak serum concentration (Cmax) of 17.4 ± 5.4 ng/mL was reached at 3.2 ± 2.4 h (Tmax) following dosing. The terminal half-life was 6.9 ± 1.7 hours. In a second study in which single 75 μg/kg subcutaneous and intravenous doses were administered to twenty-four healthy subjects, the pharmacokinetic profiles were similar between men and women. The absolute bioavailability of Neumega was >80%. In a study in which multiple, subcutaneous doses of both 25 and 50 μg/kg were administered to cancer patients receiving chemotherapy, Neumega did not accumulate and clearance of Neumega was not altered following multiple doses. Pediatric cancer patients treated with aggressive chemotherapy showed similar pharmakinetic characteristics.
In humans treated with oprelvekin on a daily base a twofold increase in fibrinogen levels occurred. Healthy volunteers displayed an increase in von-Willebrand-factor (vWf) activity. Isolated molecules formed under oprelvekin were found to have exact the same multimere structure as the 'normal' factor and were therefore fully functioning. These increases in coagulation factors may contribute to the development of stroke (see under § Side effects), but a precise association cannot be made at this stage.
In a variety of clinical studies upon which FDA approval is based, Neumega showed effectivity in reducing thrombocytopenia in oncologic patients treated with myelosuppressant chemotherapeutic drugs as measured by significantly decreased need of platelet transfusions.
Neumega is manufactured and sold by Wyeth. The drug is formulated in single-use vials containing 5 mg of oprelvekin (specific activity approximately 8 × 106 units/mg) as a sterile, lyophilized powder. The FDA approved the drug in 1997.
Neumega is indicated for the prevention of severe thrombocytopenia and the reduction of the need for platelet transfusions following myelosuppressive chemotherapy in adult patients with nonmyeloid malignancies who are at high risk of severe thrombocytopenia. Efficacy was demonstrated in patients who had experienced severe thrombocytopenia following the previous chemotherapy cycle.
In studies with rats and rabbits treated chronically, Oprelvekin showed embryo- and fetotoxicity (early death of embryos and reduction of number of fetus, fetal malformations etc.). There is no sufficient human data available. Pregnant women should only be treated, if the benefit to the mother outweighs the potential risk to the unborn.
No human data is available if the drug is distributed into human milk. Nursing women should either discontinue breast-feeding or Neumega, the decision should take into account the importance of the drug to the mother.
Neumega has caused allergic reaction which at times have been very serious. Symptoms have been edema of the face and tongue, or larynx; shortness of breath; wheezing; chest pain; hypotension (including shock); dysarthria; loss of consciousness, rash, urticaria, flushing, and fever. These reaction can occur after the first dose or after any later application. Neumega should be permanently discontinued in patients with any sign of allergy. Treatment is largely symptomatic.
Oprelvekin also has caused quite often fluid retention, ranging from peripheral edema (approximately 40% of patients) to dyspnea and full developed lung edema with or without cardiac decompensation (see contraindications and precautions). These symptoms have led to some deaths. Fluid retention may also lead to dilutional anemia (in 10 to 15% of patients). Hypokalemia may also result. Symptoms of fluid retention have been observed more often in patients following myeloablative chemotherapy (see contraindications). Severe arrhythmias (atrial flutter and atrial fibrillation) as well as fatal cardiac arrest have also been seen which may or may be not attributed to fluid retention/increased volume. Isolated cases of stroke have been noted, those patients with previous transient ischemic attacks or partial/minor strokes may be at particular risk.
Papilledema of the eyes has been observed (2%) and may lead to disturbed visual acuity and even temporary or permanent blindness. Patients with preexisting papilledema or with involvement of the central nervous system may be at higher risk.
In postmarketing studies isolated cases of severe ventricular arrhythmias and renal failure have been seen.
Injection site reactions like have also been observed (dermatitis, pain, and discoloration), but are usually mild.[ medical citation needed ]
The concomitant application of GM-CSFs such as filgrastim or Sargramostim showed no potential interactions. Additionally, no other interactions are known. Interactions with drugs undergoing P450 enzyme metabolism are not likely to occur.
Complete blood counts should be obtained before starting chemotherapy and in short intervals afterwards. Platelet counts should be done at the time of expected nadir (lowest number of platelets) and at least until remission starts (platelet counts greater than 50,000). The patients should be watched for signs of allergy, fluid retention and anemia during and after therapy with Neumega. Preexisting ascites and pericardial effusions should be monitored closely for signs of worsening.
The dosage in patients without severe renal impairment is 50 μg/kg subcutaneously once a day either abdominal, in thigh, or hip. Most patients will be able to self-administer the drug after appropriate training.
Patients with severe renal impairment should receive only 25 μg/kg daily.
The first dose should be given 6 to 24 hours after completion of chemotherapy. Dosing should be continued until platelet counts reach at least 50,000 cells. Usually, one course of Neumega encompasses 10 to 21 days.
The drug should be discontinued at least 2 days before starting the next chemotherapy cycle.
Neumega vials must be stored in a refrigerator at 2–8 °C (36–46 °F). Protect from light. Do not freeze.
A myelodysplastic syndrome (MDS) is one of a group of cancers in which immature blood cells in the bone marrow do not mature, and as a result, do not develop into healthy blood cells. Early on, no symptoms typically are seen. Later, symptoms may include fatigue, shortness of breath, bleeding disorders, anemia, or frequent infections. Some types may develop into acute myeloid leukemia.
Immune thrombocytopenic purpura (ITP), also known as idiopathic thrombocytopenic purpura or immune thrombocytopenia, is an autoimmune primary disorder of hemostasis characterized by a low platelet count in the absence of other causes. ITP often results in an increased risk of bleeding from mucosal surfaces or the skin. Depending on which age group is affected, ITP causes two distinct clinical syndromes: an acute form observed in children and a chronic form in adults. Acute ITP often follows a viral infection and is typically self-limited, while the more chronic form does not yet have a specific identified cause. Nevertheless, the pathogenesis of ITP is similar in both syndromes involving antibodies against various platelet surface antigens such as glycoproteins.
Uremia is the term for high levels of urea in the blood. Urea is one of the primary components of urine. It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which would be normally excreted in the urine. Uremic syndrome can be defined as the terminal clinical manifestation of kidney failure. It is the signs, symptoms and results from laboratory tests which result from inadequate excretory, regulatory, and endocrine function of the kidneys. Both uremia and uremic syndrome have been used interchangeably to denote a very high plasma urea concentration that is the result of renal failure. The former denotation will be used for the rest of the article.
In hematology, thrombocytopenia is a condition characterized by abnormally low levels of platelets in the blood. Low levels of platelets in turn may lead to prolonged or excessive bleeding. It is the most common coagulation disorder among intensive care patients and is seen in a fifth of medical patients and a third of surgical patients.
A megakaryocyte is a large bone marrow cell with a lobated nucleus that produces blood platelets (thrombocytes), which are necessary for normal clotting. In humans, megakaryocytes usually account for 1 out of 10,000 bone marrow cells, but can increase in number nearly 10-fold during the course of certain diseases. Owing to variations in combining forms and spelling, synonyms include megalokaryocyte and megacaryocyte.
Thrombopoietin (THPO) also known as megakaryocyte growth and development factor (MGDF) is a protein that in humans is encoded by the THPO gene.
Low-molecular-weight heparin (LMWH) is a class of anticoagulant medications. They are used in the prevention of blood clots and, in the treatment of venous thromboembolism, and the treatment of myocardial infarction.
Loop diuretics are pharmacological agents that primarily inhibit the Na-K-Cl cotransporter located on the luminal membrane of cells along the thick ascending limb of the loop of Henle. They are often used for the treatment of hypertension and edema secondary to congestive heart failure, liver cirrhosis, or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.
POEMS syndrome is a rare paraneoplastic syndrome caused by a clone of aberrant plasma cells. The name POEMS is an acronym for some of the disease's major signs and symptoms, as is PEP.
Acute liver failure is the appearance of severe complications rapidly after the first signs of liver disease, and indicates that the liver has sustained severe damage. The complications are hepatic encephalopathy and impaired protein synthesis. The 1993 classification defines hyperacute as within 1 week, acute as 8–28 days, and subacute as 4–12 weeks; both the speed with which the disease develops and the underlying cause strongly affect outcomes.
Plateletpheresis is the process of collecting thrombocytes, more commonly called platelets, a component of blood involved in blood clotting. The term specifically refers to the method of collecting the platelets, which is performed by a device used in blood donation that separates the platelets and returns other portions of the blood to the donor. Platelet transfusion can be a life-saving procedure in preventing or treating serious complications from bleeding and hemorrhage in patients who have disorders manifesting as thrombocytopenia or platelet dysfunction. This process may also be used therapeutically to treat disorders resulting in extraordinarily high platelet counts such as essential thrombocytosis.
Primary myelofibrosis (PMF) is a rare bone marrow blood cancer. It is classified by the World Health Organization (WHO) as a type of myeloproliferative neoplasm, a group of cancers in which there is activation and growth of mutated cells in the bone marrow. This is most often associated with a somatic mutation in the JAK2, CALR, or MPL genes. In PMF, the bony aspects of bone marrow are remodeled in a process called osteosclerosis; in addition, fibroblast secrete collagen and reticulin proteins that are collectively referred to as (fibrosis). These two pathological processes compromise the normal function of bone marrow resulting in decreased production of blood cells such as erythrocytes, granulocytes and megakaryocytes, the latter cells responsible for the production of platelets.
Azacitidine, sold under the brand name Vidaza among others, is a medication used for the treatment of myelodysplastic syndrome, myeloid leukemia, and juvenile myelomonocytic leukemia. It is a chemical analog of cytidine, a nucleoside in DNA and RNA. Azacitidine and its deoxy derivative, decitabine were first synthesized in Czechoslovakia as potential chemotherapeutic agents for cancer.
Flucytosine, also known as 5-fluorocytosine (5-FC), is an antifungal medication. It is specifically used, together with amphotericin B, for serious Candida infections and cryptococcosis. It may be used by itself or with other antifungals for chromomycosis. Flucytosine is used by mouth and by injection into a vein.
Palifermin is a truncated human recombinant keratinocyte growth factor (KGF) produced in Escherichia coli. KGF stimulates the growth of cells that line the surface of the mouth and intestinal tract.
Eptifibatide, is an antiplatelet drug of the glycoprotein IIb/IIIa inhibitor class. Eptifibatide is a cyclic heptapeptide derived from a disintegrin protein found in the venom of the southeastern pygmy rattlesnake. It belongs to the class of the arginin-glycin-aspartat-mimetics and reversibly binds to platelets. Eptifibatide has a short half-life. The drug is the third inhibitor of GPIIb/IIIa that has found broad acceptance after the specific antibody abciximab and the non-peptide tirofiban entered the global market.
Interleukin 11 is a protein that in humans is encoded by the IL11 gene.
Cefditoren, also known as cefditoren pivoxil is an antibiotic used to treat infections caused by Gram-positive and Gram-negative bacteria that are resistant to other antibiotics. It is mainly used for treatment of community acquired pneumonia. It is taken by mouth and is in the cephalosporin family of antibiotics, which is part of the broader beta-lactam group of antibiotics.
CFU-GEMM is a colony forming unit that generates myeloid cells. CFU-GEMM cells are the oligopotential progenitor cells for myeloid cells; they are thus also called common myeloid progenitor cells or myeloid stem cells. "GEMM" stands for granulocyte, erythrocyte, monocyte, megakaryocyte.
Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare autosomal recessive bone marrow failure syndrome characterized by severe thrombocytopenia, which can progress to aplastic anemia and leukemia. CAMT usually manifests as thrombocytopenia in the initial month of life or in the fetal phase. Typically CAMPT presents with petechiae, cerebral bleeds, recurrent rectal bleeding, or pulmonary hemorrhage.