Inosine pranobex

Last updated

Isoprinosine
INN: Inosine acedoben dimepranol
Inosine pranobex.png
Chemical structures of the three components of inosine pranobex (from top to bottom: inosine, acedoben and dimethylamino isopropanol)
Combination of
Inosine Immunostimulant
Dimethylaminoisopropanol Immunostimulant
Acedoben Immunostimulant
Clinical data
Trade names Imunovir, Delimmun, Isoprinosine
Other namesMethisoprinol
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
PubChem CID
ChemSpider
UNII
KEGG
ECHA InfoCard 100.048.313 OOjs UI icon edit-ltr-progressive.svg

Inosine pranobex (BAN; also known as inosine acedoben dimepranol (INN), methisoprinol, inosiplex or Isoprinosine) is an antiviral drug that is a combination of inosine and dimepranol acedoben (a salt of acetamidobenzoic acid and dimethylaminoisopropanol) in a ratio of 1 to 3. It is used primarily in European countries, especially as a treatment for acute viral infections, such as the common cold.

Contents

Mechanism of action

Immunomodulatory effects

Inosine pranobex acts as an immunostimulant, an analog of thymus hormones. [1] It is indicated for an entire spectrum of patients with clinical manifestations of immune deficiency. It modulates the immune system by immunostimulation or immunooptimisation of defensive inflammation [2] at the cellular level, e.g. by interfering with energy metabolism, cell signalling and proliferation.

One of the main immunostimulatory effects of inosine pranobex lies in T-cell modulation. [3] Its administration has been shown both in vivo and in vitro to induce Th1 cell-type response, as evidenced by the increase in pro-inflammatory cytokines (e.g. IL-2, ILN-γ) in mitogen- or antigen-activated cells. [4] As such, T-cell maturation and differentiation is further fostered. [5] The increase of ILN-γ in serum is proven to inhibit the production of IL-10, [6] which could explain the drug's suppressive effect on anti-inflammatory cytokines.

It also modulates components of innate immunity. In respect to natural killer cells, both population [7] and activity [8] increased as a result of inosine pranobex therapy. [9] It has also been proven that other cells of the innate immunity are affected, [10] as neutrophil, monocyte and macrophage chemotaxis and phagocytosis were enhanced in cancer patients. [11]

Antiviral properties

Inosine pranobex also has direct antiviral properties. [2] Several hypotheses have been formed over time, but all of them agree that the drug has direct effect on viral RNA synthesis via inhibiting transcription and translation of the genetic code at cellular level. [12]

In fact, cellular RNA and protein synthesis are markedly depressed shortly after viral infection, as the cell is instructed to focus resources on producing viral RNA instead. Inosine pranobex is believed to override this mechanism and incentivize cellular RNA synthesis over viral. [13] [14] It has been suggested that the drug itself, or any one of its components, directly acts on the ribosomes of infected cells providing an advantage to cellular RNA in competition for synthesis. [14] This could also result in errors in the viral RNA transcription, which would hinder viral proliferation as well. [15]

Another hypothesis suggests that inosine itself has direct antiviral properties, as evidenced by the rather fast metabolism of the compound. [3] It is assumed that the drug breaks down metabolically into its constituents, therefore permitting direct inosine action. Inosine is proven to act on ribosome directly, [16] as such one theory suggests that it inhibits the synthesis of phosphoribosyl pyrophosphate from ribose phosphate, the former being an intermediate in the biosynthesis of purine nucleotides such as adenylate and guanylate. A 2014 study [17] has also shown that inosine affects DNA and RNA directly, as such the wobble mechanism, in which inosine replaces adenine, might result in errors in viral RNA furthermore.

It is apparent that inosine pranobex acts on the viral replication through many mechanisms, and is as such pleiotropic in nature. Most of these mechanisms are not specific to certain viruses and as such the drug is potent in treating a wide spectrum of viral infections, something that is rather uncommon for antivirals, as they tend to be very specific in their target. These mechanisms are also so general that no virus has been ever shown to develop resistance to them. [3]

Macroscopically, antiviral activity has been documented in vivo on several animal models, and experimentally tested on the cytomegalovirus and Influenza disease strains. In vitro, there is antiviral activity documented for many RNA and DNA viruses including, but not limited to: herpes simplex virus, cytomegalovirus, adenovirus, poliovirus, and Influenza A and B viruses. [18]

Indications

Preventative use

For patients with sub-optimally functioning immune systems, inosine pranobex can also be helpful in managing and decreasing the incidence [19] of common viral infections, such as the common cold or influenza. [20] As such, it is commonly prescribed preventatively, albeit at a lower dose. Several studies have investigated the benefits of inosine pranobex therapy in frequently ill children [21] [22] and returned positive results in both clinical and immunological outcomes.

Herpesvirus infections

Typically, inosine pranobex is indicated as a safe antiviral for herpesviruses, such as herpes simplex virus types 1 and 2, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). [23] The drug also proved helpful in managing complicated cases of lengthy reactivations of herpesviruses such as EBV, and subsequent post-viral fatigue.

Human Papilloma Virus (HPV) infections

Inosine pranobex may be prescribed for the treatment of HPV infections both benign and oncogenic, [24] as a very safe and effective alternative therapy. Usually it is administered in combination with other treatment methods, such as CO2 laser and podophyllotoxin.

It was proven to be effective at treating genital warts [25] in combination with conventional non-surgical treatments. It can also be used to treat vulvar HPV infection, and cervical dysplasia. [26] It was also suggested as a possible alternative treatment for young women with chronic vulvodynia. [27] Several long-term studies have shown efficacy even compared to surgical method at treating oral HPV-positive proliferative verrucous leucoplakia (PVL). [28] [3]

Influenza and Rhinovirus infections

The evidence in treating rhinovirus infections is mixed. While no statistically significant effect was observed in rhinovirus 44 or 32 infection, [29] its administration in rhinovirus 21 infection led to statistically improved health outcomes in patients, shortened infectivity and decreased viral shedding. [20] In Influenza and Influenza-like (RSV, adenovirus and parainfluenza virus) infections, inosine pranobex did lower the symptom severity and duration. [30] [3]

COVID-19

When the global coronavirus pandemic hit in 2020, inosine pranobex was one of the first medication used experimentally to treat the SARS-CoV-2 induced virosis, mainly due to its remarkably wide area of use and general antiviral properties. Several clinical trials were conducted returning largely positive results.

Its use was pioneered in the Czech Republic, where it was first noted that use greatly decreases mortality among elderly. [31] [32] In 2022, a large Phase 3 trial concluded that administration of inosine pranobex should start as early as possible with greatly improved outcomes in mild to moderate COVID-19 patients. [33]

Type B and C Viral Hepatitis

In type B hepatitis, inosine pranobex was found ineffective during the acute phase of the infection, though in 28 days lower bilirubin and transaminase levels were detected. Greater number of patients became antigen-negative within a 90 day time-frame indicating a faster recovery rate. [34]

Type C hepatitis was not studied as extensively, hence not so much data is available. It has been shown that inosine pranobex therapy in combination with ribavirin normalizes alanine aminotransferase levels in patients unresponsive to interferon treatment. [35]

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

There is also some evidence of the drug being helpful in treating chronic post-viral fatigue. [36] This might be indicative of the drug being effective even for other post-acute infection syndromes (PAIS), such as Long COVID (PASC). [37] In 2003, the possibility of using inosine pranobex for treating myalgic encephalomyelitis/chronic fatigue syndrome was investigated experimentally and returned promising results, [38] when 6 out of 10 subjects reported noticeable improvement. Promised large scale Phase II/III clinical trials confirming initially observed effects have not been conducted yet as of 2024.

In 2021, the US ME/CFS Clinician Coalition recommended the use of inosine pranobex for "immune dysfunction" symptoms, specifically "frequent viral infections, herpes simplex outbreaks, low natural killer cell activity, sore throat, tender nodes, low grade fevers". [39]

Subacute Sclerosing Panencephalitis (SSPE)

Although the effect is unclear, several case reports have suggested that inosine pranobex may provide beneficial therapeutic effects in managing the illness. Several long-term studies suggested that the drug both increased survival and decreased neurological deficiencies. [40] It is not a cure for the illness though, as currently no cure exists.

Human Immunodeficiency Virus (HIV) and AIDS

Inosine pranobex has been proven to delay AIDS progression in HIV positive patients. In a large Phase I study of 831 HIV-positive patients, it was found to be very safe with no serious side effects reported. [41]

Dosing

For acute infection, the typical dose is 50 mg/day/kg of body weight. For prevention of chronic issues lower doses are typically recommended, usually under 2 g/day. The maximum dose permitted is around 4 g/day. The toxicity of the drug in humans is unknown, but doses upward of 1 g/kg of body weight were toxic in rodents. [42]

Safety

The most commonly found effects are nausea and vomiting. Hypotension, drowsiness and skin irritation may also occur. Metabolism of the inosine component of the drug can lead to an increase in uric acid levels in both blood and urine. The occurrence of transient reversible hyperuricaemia occurs in about 10% of patients taking inosine pranobex. [43] Due to the potential risk of hyperuricosuria and the development of urate nephrolithiasis, increased fluid intake and exclusion of acidic foods is recommended during isoprinosine therapy. Its administration is not recommended in combination with immunosuppressing medicine.

Tolerance studies in healthy individuals and patients have consistently shown that inosine pranobex has no serious side effects and is remarkably well tolerated by the organism. Continuous administration of the drug for up to 7 years, at doses ranging from 1 to 8 g per day, has only occasionally caused transient nausea. This nausea was associated with a large number of tablets ingested. In addition, transient increases in serum and urinary uric acid levels have been reported. This increase in serum uric acid concentration is more common in male patients than in females. [44]

Neither long-term damage not death from overdose have been reported in relation to inosine pranobex, doses upward of 1 g/kg of body weight were found to be toxic in rodents. [42] The drug is metabolized very quickly, therefore any side effects should subside quickly with no long-term effects.

History

The first studies conducted with the drug happened as early as the 1970s. It was licensed in 1971 [45] with the first robust preliminary review of its efficacy having been published in 1986. [46] Since the beginning, the drug was praised for its wide array of use cases, it was noted early on that it has a clinically noticeable effect on the immune function. In the 1990s, the possibility of the drug being used for HIV infection has also been investigated thoroughly, with the results typically highlighting improved immune function. [47] Nonetheless, following the development of more effective HIV drugs, this use case has been largely discontinued.

Throughout the 21st century, inosine pranobex has been used mainly in Central and Eastern Europe, in contrast to the United States, where the medication is not as widely available. In Eastern Europe, namely Poland, the medication is available over-the-counter under the brand name of Groprinosin® thanks to its safety and low risk of overdose.

In 2020, inosine pranobex was found to be a cheap and effective treatment for SARS-CoV-2 in cases not requiring hospitalization with fatality rate effectively halved as a result of its use. [45]

Related Research Articles

<span class="mw-page-title-main">Interferon</span> Signaling proteins released by host cells in response to the presence of pathogens

Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<span class="mw-page-title-main">Ribavirin</span> Antiviral medication

Ribavirin, also known as tribavirin, is an antiviral medication used to treat RSV infection, hepatitis C and some viral hemorrhagic fevers. For hepatitis C, it is used in combination with other medications such as simeprevir, sofosbuvir, peginterferon alfa-2b or peginterferon alfa-2a. Among the viral hemorrhagic fevers it is sometimes used for Lassa fever, Crimean–Congo hemorrhagic fever, and Hantavirus infection but should not be used for Ebola or Marburg infections. Ribavirin is taken orally or inhaled. Despite widespread usage, since the 2010s it has faced scrutiny for a lack of efficacy in treating viral infections it has historically been prescribed for.

<span class="mw-page-title-main">Rhinovirus</span> Genus of viruses (Enterovirus)

The rhinovirus is a positive-sense, single-stranded RNA virus belonging to the genus Enterovirus in the family Picornaviridae. Rhinovirus is the most common viral infectious agent in humans and is the predominant cause of the common cold.

The management of HIV/AIDS normally includes the use of multiple antiretroviral drugs as a strategy to control HIV infection. There are several classes of antiretroviral agents that act on different stages of the HIV life-cycle. The use of multiple drugs that act on different viral targets is known as highly active antiretroviral therapy (HAART). HAART decreases the patient's total burden of HIV, maintains function of the immune system, and prevents opportunistic infections that often lead to death. HAART also prevents the transmission of HIV between serodiscordant same-sex and opposite-sex partners so long as the HIV-positive partner maintains an undetectable viral load.

<span class="mw-page-title-main">Aciclovir</span> Antiviral medication used against herpes, chickenpox, and shingles

Aciclovir, also known as acyclovir, is an antiviral medication. It is primarily used for the treatment of herpes simplex virus infections, chickenpox, and shingles. Other uses include prevention of cytomegalovirus infections following transplant and severe complications of Epstein–Barr virus infection. It can be taken by mouth, applied as a cream, or injected.

<span class="mw-page-title-main">Valaciclovir</span> Antiviral medication

Valaciclovir, also spelled valacyclovir, is an antiviral medication used to treat outbreaks of herpes simplex or herpes zoster (shingles). It is also used to prevent cytomegalovirus following a kidney transplant in high risk cases. It is taken by mouth.

An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour. Oncolytic viruses are thought not only to cause direct destruction of the tumour cells, but also to stimulate host anti-tumour immune system responses. Oncolytic viruses also have the ability to affect the tumor micro-environment in multiple ways.

<span class="mw-page-title-main">Herpes simplex virus</span> Species of virus

Herpes simplex virus1 and 2, also known by their taxonomic names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is sold and used as an antiviral medication for influenza in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) co-infection is a multi-faceted, chronic condition that significantly impacts public health. According to the World Health Organization (WHO), 2 to 15% of those infected with HIV are also affected by HCV, increasing their risk of morbidity and mortality due to accelerated liver disease. The burden of co-infection is especially high in certain high-risk groups, such as intravenous drug users and men who have sex with men. These individuals who are HIV-positive are commonly co-infected with HCV due to shared routes of transmission including, but not limited to, exposure to HIV-positive blood, sexual intercourse, and passage of the Hepatitis C virus from mother to infant during childbirth.

<span class="mw-page-title-main">Nitazoxanide</span> Broad-spectrum antiparasitic and antiviral medication

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.

<span class="mw-page-title-main">Pleconaril</span> Antiviral drug

Pleconaril (Picovir) is an antiviral drug that was being developed by Schering-Plough for prevention of asthma exacerbations and common cold symptoms in patients exposed to picornavirus respiratory infections. Pleconaril, administered either orally or intranasally, is active against viruses in the Picornaviridae family, including Enterovirus and Rhinovirus. It has shown useful activity against the dangerous enterovirus D68.

The central nervous system (CNS) controls most of the functions of the body and mind. It comprises the brain, spinal cord and the nerve fibers that branch off to all parts of the body. The CNS viral diseases are caused by viruses that attack the CNS. Existing and emerging viral CNS infections are major sources of human morbidity and mortality.

<span class="mw-page-title-main">Herpes</span> Viral disease caused by herpes simplex viruses

Herpes simplex, often known simply as herpes, is a viral infection caused by the herpes simplex virus. Herpes infections are categorized by the area of the body that is infected. The two major types of herpes are oral herpes and genital herpes, though other forms also exist.

Herpes simplex research includes all medical research that attempts to prevent, treat, or cure herpes, as well as fundamental research about the nature of herpes. Examples of particular herpes research include drug development, vaccines and genome editing. HSV-1 and HSV-2 are commonly thought of as oral and genital herpes respectively, but other members in the herpes family include chickenpox (varicella/zoster), cytomegalovirus, and Epstein-Barr virus. There are many more virus members that infect animals other than humans, some of which cause disease in companion animals or have economic impacts in the agriculture industry.

<span class="mw-page-title-main">Herpes simplex keratitis</span> Medical condition

Herpetic simplex keratitis is a form of keratitis caused by recurrent herpes simplex virus (HSV) infection in the cornea.

<span class="mw-page-title-main">HIV/AIDS research</span> Field of immunology research

HIV/AIDS research includes all medical research that attempts to prevent, treat, or cure HIV/AIDS, as well as fundamental research about the nature of HIV as an infectious agent and AIDS as the disease caused by HIV.

<span class="mw-page-title-main">Pritelivir</span> Chemical compound

Pritelivir is a direct-acting antiviral drug in development for the treatment of herpes simplex virus infections (HSV). This is particularly important in immune compromised patients. It is currently in Phase III clinical development by the German biopharmaceutical company AiCuris Anti-infective Cures AG. US FDA granted fast track designation for pritelivir in 2017 and breakthrough therapy designation 2020.

HSV epigenetics is the epigenetic modification of herpes simplex virus (HSV) genetic code.

References

  1. "Inosine Pranobex". American Cancer Society. Archived from the original on 23 August 2010. Retrieved 31 July 2013.
  2. 1 2 Krejsek J, Andrýs C, Krčmová I (2016). Imunologie člověka[Human immunology] (in Czech). Czechia: Garamon sro, Hradec Králové. OCLC   982100822.
  3. 1 2 3 4 5 Sliva J, Pantzartzi CN, Votava M (August 2019). "Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases". Advances in Therapy. 36 (8): 1878–1905. doi:10.1007/s12325-019-00995-6. PMC   6822865 . PMID   31168764.
  4. Petrova M, Jelev D, Ivanova A, Krastev Z (April 2010). "Isoprinosine affects serum cytokine levels in healthy adults". Journal of Interferon & Cytokine Research. 30 (4): 223–228. doi:10.1089/jir.2009.0057. PMID   20038210.
  5. You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID   25819042.
  6. Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. (October 2010). "Biology of interleukin-10" (PDF). Cytokine & Growth Factor Reviews. 21 (5): 331–344. doi:10.1016/j.cytogfr.2010.09.002. PMID   21115385.
  7. Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, et al. (January 2017). "Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications". International Immunopharmacology. 42: 108–114. doi:10.1016/j.intimp.2016.11.023. PMID   27912146.
  8. Hersey P, Edwards A (January 1984). "Effect of isoprinosine on natural killer cell activity of blood mononuclear cells in vitro and in vivo". International Journal of Immunopharmacology. 6 (4): 315–320. doi:10.1016/0192-0561(84)90048-1. PMID   6207121.
  9. Rumel Ahmed S, Newman AS, O'Daly J, Duffy S, Grafton G, Brady CA, et al. (January 2017). "Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications". International Immunopharmacology. 42: 108–114. doi:10.1016/j.intimp.2016.11.023. PMID   27912146.
  10. Tsang KY, Pan JF, Swanger DL, Fudenberg HH (January 1985). "In vitro restoration of immune responses in aging humans by isoprinosine". International Journal of Immunopharmacology. 7 (2): 199–206. doi:10.1016/0192-0561(85)90027-X. PMID   2409037.
  11. Tsang KY, Fudenberg HH, Pan JF, Gnagy MJ, Bristow CB (January 1983). "An in vitro study on the effects of isoprinosine on immune responses in cancer patients". International Journal of Immunopharmacology. 5 (6): 481–490. doi:10.1016/0192-0561(83)90041-3. PMID   6198297.
  12. You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID   25819042.
  13. Ohnishi H, Kosuzume H, Inaba H, Okura M, Morita Y, Mochizuki H, et al. (October 1982). "Mechanism of host defense suppression induced by viral infection: mode of action of inosiplex as an antiviral agent". Infection and Immunity. 38 (1): 243–250. doi:10.1128/iai.38.1.243-250.1982. PMC   347725 . PMID   6183209.
  14. 1 2 Gordon P, Brown ER (September 1972). "The antiviral activity of isoprinosine". Canadian Journal of Microbiology. 18 (9): 1463–1470. doi:10.1139/m72-224. PMID   4341918.
  15. DeSimone C, Hadden JW (1987). "Prohost Modulation of Immunity by Isoprinosine and NPT 15392". Antibiosis and Host Immunity. Boston, MA: Springer US. pp. 279–290. doi:10.1007/978-1-4613-1901-6_32. ISBN   978-1-4612-9058-2.
  16. Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF (January 2019). "Inosine induces context-dependent recoding and translational stalling". Nucleic Acids Research. 47 (1): 3–14. doi:10.1093/nar/gky1163. PMID   30462291.
  17. Alseth I, Dalhus B, Bjørås M (June 2014). "Inosine in DNA and RNA". Current Opinion in Genetics & Development. 26: 116–123. doi: 10.1016/j.gde.2014.07.008 . PMID   25173738.
  18. Muldoon RL, Mezny L, Jackson GG (September 1972). "Effect of isoprinosine against influenza and some other viruses causing respiratory diseases". Antimicrobial Agents and Chemotherapy. 2 (3): 224–228. doi:10.1128/AAC.2.3.224. PMC   444295 . PMID   4790561.
  19. Osidak LV, Obraztsova EV (April 2012). "Efficacy of the Inosine pranobex molecule in therapeutic and pediatric practice". Èpidemiologiâ i Infekcionnye Bolezni. Aktual'nye voprosy.[Epidemiology and Infectious Diseases. Current Items] (in Russian). 15 (4): 26-32 https://journals.eco-vector.com/2226-6976/article/view/275885.
  20. 1 2 Waldman RH, Ganguly R (March 1977). "Therapeutic efficacy of inosiplex (Isoprinosine) in rhinovirus infection". Annals of the New York Academy of Sciences. 284 (1): 153–160. Bibcode:1977NYASA.284..153W. doi:10.1111/j.1749-6632.1977.tb21946.x. PMID   81636.
  21. Gołębiowska-Wawrzyniak M, Markiewicz K, Kozar A, Derentowicz P, Siwińska-Gołębiowska H (2004-06-30). "The Study on Therapeutic Efficacy of Inosine Pranobex in Children". Polish Journal of Food and Nutrition Sciences. 54 (2s): 33–36. ISSN   1230-0322.
  22. Melekhina E, Muzyka A, Lysenkova M, Gorelov A (2018). "A comparative analysis of therapeutic regimens in children with monthly respiratory infections and reactivation of infection caused by human herpesvirus type 6". Voprosy praktičeskoj pediatrii. 13 (5): 74–82. doi:10.20953/1817-7646-2018-5-74-82. ISSN   1817-7646.
  23. Hashimoto K, Hosoya M (January 2021). "Advances in Antiviral Therapy for Subacute Sclerosing Panencephalitis". Molecules. 26 (2): 427. doi: 10.3390/molecules26020427 . PMC   7830519 . PMID   33467470.
  24. Šimůnková M. "Inosin pranobex u akutních i chronických virových onemocnění | MT". www.tribune.cz (in Czech). Retrieved 2024-05-02.
  25. Davidson-Parker J, Dinsmore W, Khan MH, Hicks DA, Morris CA, Morris DF (December 1988). "Immunotherapy of genital warts with inosine pranobex and conventional treatment: double blind placebo controlled study". Genitourinary Medicine. 64 (6): 383–386. doi:10.1136/sti.64.6.383. PMC   1194272 . PMID   2465265.
  26. Gudz OV, Kamilova IK, Miklin OP (2016). "HPV infection of the cervix uteri: Prospects for combination treatment". Rossiiskii Vestnik Akushera-ginekologa. 16 (2): 99. doi:10.17116/rosakush201616299-103. ISSN   1726-6122.
  27. Sand Petersen C, Weismann K (September 1996). "Isoprenosine improves symptoms in young females with chronic vulvodynia". Acta Dermato-Venereologica. 76 (5): 404. doi: 10.2340/0001555576404404 . PMID   8891022.
  28. Femiano F, Gombos F, Scully C (August 2001). "Oral proliferative verrucous leukoplakia (PVL); open trial of surgery compared with combined therapy using surgery and methisoprinol in papillomavirus-related PVL". International Journal of Oral and Maxillofacial Surgery. 30 (4): 318–322. doi:10.1054/ijom.2001.0066. PMID   11518355.
  29. Pachuta DM, Togo Y, Hornick RB, Schwartz AR, Tominaga S (April 1974). "Evaluation of isoprinosine in experimental human rhinovirus infection". Antimicrobial Agents and Chemotherapy. 5 (4): 403–408. doi:10.1128/aac.5.4.403. PMC   428983 . PMID   15825396.
  30. Beran J, Šalapová E, Špajdel M (November 2016). "Inosine pranobex is safe and effective for the treatment of subjects with confirmed acute respiratory viral infections: analysis and subgroup analysis from a Phase 4, randomised, placebo-controlled, double-blind study". BMC Infectious Diseases. 16 (1): 648. doi: 10.1186/s12879-016-1965-5 . PMC   5100179 . PMID   27821093.
  31. Beran J, Špajdel M, Slíva J (November 2021). "Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course". Viruses. 13 (11): 2246. doi: 10.3390/v13112246 . PMC   8619495 . PMID   34835052.
  32. Beran J, Špajdel M, Katzerová V, Holoušová A, Malyš J, Finger Rousková J, et al. (December 2020). "Inosine Pranobex Significantly Decreased the Case-Fatality Rate among PCR Positive Elderly with SARS-CoV-2 at Three Nursing Homes in the Czech Republic". Pathogens. 9 (12): 1055. doi: 10.3390/pathogens9121055 . PMC   7766462 . PMID   33339426.
  33. Jayanthi CR, Swain AK, Ganga RT, Halnor D, Avhad A, Khan MS, et al. (September 2022). "Efficacy and Safety of Inosine Pranobex in COVID-19 Patients: A Multicenter Phase 3 Randomized Double-Blind, Placebo-Controlled Trial". Advanced Therapeutics. 5 (12): 2200159. doi:10.1002/adtp.202200159. PMC   9539257 . PMID   36246300.
  34. Indries M (December 2013). "Clinical and histological corelations in chronic viral hepatitis C". BMC Infectious Diseases. 13 (S1): 52. doi: 10.1186/1471-2334-13-s1-p52 . ISSN   1471-2334. PMC   3882649 .
  35. Pardo M, Carreño V (August 1994). "Lack of efficacy of inosine pranobex in the treatment of chronic hepatitis C". Journal of Hepatology. 21 (2): 278. doi:10.1016/s0168-8278(05)80410-6. PMID   7527438.
  36. "Největší informační zdroj pro lékaře" [The largest information source for doctors]. www.prolekare.cz (in Czech). Retrieved 2024-05-01.
  37. Бабаченко, И. В. (2024-01-10). Эффективность Инозина Пранобекса в лечении и профилактике инфекционных заболеваний (систематический обзор). Journal InfectologyЖурнал инфектологии (in Russian). 15 (4): 42–53. doi: 10.22625/2072-6732-2023-15-4-42-53 . ISSN   2072-6732.
  38. Diaz-Mitoma F, Turgonyi E, Kumar A, Lim W, Larocque L, Hyde BM (January 2003). "Clinical Improvement in Chronic Fatigue Syndrome Is Associated with Enhanced Natural Killer Cell-Mediated Cytotoxicity: The Results of a Pilot Study with Isoprinosine". Journal of Chronic Fatigue Syndrome. 11 (2): 71–95. doi:10.1300/J092v11n02_06. ISSN   1057-3321.
  39. Campling F, Sharpe M (2008-07-03). "Some myths about CFS/ME". Chronic fatigue syndrome (CFS/ME). Oxford University PressOxford. pp. 57–60. doi:10.1093/oso/9780199233168.003.0009. ISBN   978-0-19-923316-8.
  40. Huttenlocher PR, Mattson RH (June 1979). "Isoprinosine in subacute sclerosing panencephalitis". Neurology. 29 (6): 763–771. doi:10.1212/WNL.29.6.763. PMID   88024.
  41. Glasky AJ, Gordon JF (1987-01-01). "Isoprinosine (inosine pranobex BAN, INPX) in the treatment of AIDS and other acquired immunodeficiencies of clinical importance". Cancer Detection and Prevention. Supplement. 1: 597–609. PMID   2446760.
  42. 1 2 "Inosine pranobex". go.drugbank.com. Retrieved 2024-05-02.
  43. You Y, Wang L, Li Y, Wang Q, Cao S, Tu Y, et al. (June 2015). "Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients". The Journal of Dermatology. 42 (6): 596–601. doi:10.1111/1346-8138.12845. PMID   25819042.
  44. Campoli-Richards DM, Sorkin EM, Heel RC (November 1986). "Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy". Drugs. 32 (5): 383–424. doi:10.2165/00003495-198632050-00001. PMID   2431857.
  45. 1 2 Beran J, Špajdel M, Slíva J (November 2021). "Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course". Viruses. 13 (11): 2246. doi: 10.3390/v13112246 . PMC   8619495 . PMID   34835052.
  46. Campoli-Richards DM, Sorkin EM, Heel RC (November 1986). "Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy". Drugs. 32 (5): 383–424. doi:10.2165/00003495-198632050-00001. PMID   2431857.
  47. De Simone C, Famularo G, Tzantzoglou S, Moretti S, Jirillo E (January 1991). "Inosine pranobex in the treatment of HIV infection: a review". International Journal of Immunopharmacology. 13 (Suppl 1): 19–27. doi:10.1016/0192-0561(91)90120-v. PMID   1726683.