Ribavirin

Last updated
Ribavirin
Ribavirin.svg
Ribavirin-from-xtal-Mercury-3D-bs.png
Clinical data
Pronunciation /ˌrbəˈvrɪn/ RY-bə-VY-rin
Trade names Copegus, Rebetol, Virazole, other [1]
Other names1-(β-D-Ribofuranosyl)-1"H"-1,2,4-triazole-3-carboxamide, tribavirin (BAN UK)
AHFS/Drugs.com Monograph
MedlinePlus a605018
License data
Pregnancy
category
  • AU:X (High risk)
Routes of
administration
Oral, Inhalation
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 64% [5]
Protein binding 0% [5]
Metabolism liver and intracellularly [5]
Elimination half-life 298 hours (multiple dose); 43.6 hours (single dose) [5]
Excretion Urine (61%), faeces (12%) [5]
Identifiers
  • 1-[(2"R",3"R",4"S",5"R")-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1"H"-1,2,4-triazole-3-carboxamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard 100.164.587 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C8H12N4O5
Molar mass 244.207 g·mol−1
3D model (JSmol)
Melting point 166 to 168 °C (331 to 334 °F)
  • OC[C@@H](O1)[C@@H](O)[C@@H](O)[C@@H]1N2N=C(C(N)=O)N=C2
  • InChI=1S/C8H12N4O5/c9-6(16)7-10-2-12(11-7)8-5(15)4(14)3(1-13)17-8/h2-5,8,13-15H,1H2,(H2,9,16)/t3-,4-,5-,8-/m1/s1 Yes check.svgY
  • Key:IWUCXVSUMQZMFG-AFCXAGJDSA-N Yes check.svgY
   (verify)

Ribavirin, also known as tribavirin, is an antiviral medication used to treat RSV infection, hepatitis C and some viral hemorrhagic fevers. [1] For hepatitis C, it is used in combination with other medications such as simeprevir, sofosbuvir, peginterferon alfa-2b or peginterferon alfa-2a. [1] Among the viral hemorrhagic fevers it is sometimes used for Lassa fever, Crimean–Congo hemorrhagic fever, and Hantavirus infection but should not be used for Ebola or Marburg infections. [1] Ribavirin is taken orally (swallowed by mouth) or inhaled. [1] Despite widespread usage, since the 2010s it has faced scrutiny for a lack of efficacy in treating viral infections it has historically been prescribed for. [6] [7]

Contents

Common side effects include tiredness, headache, nausea, fever, muscle pains, and an irritable mood. [1] Serious side effects include red blood cell breakdown, liver problems, and allergic reactions. [1] Use during pregnancy results in harm to the baby. [1] Effective birth control is recommended for both males and females for at least seven months during and after use. [8] The mechanism of action of ribavirin is not entirely clear. [1]

Ribavirin was patented in 1971 and approved for medical use in 1986. [9] It is on the World Health Organization's List of Essential Medicines. [10] It is available as a generic medication. [1]

Medical uses

Ribavirin is used primarily to treat chronic hepatitis C and viral hemorrhagic fevers (which is an orphan indication in most countries). [11] Its efficacy for these purposes has been questioned: it has an FDA boxed warning against its use as a monotherapy (sole drug) for chronic hepatitis C, and thus it may only be prescribed in the United States as an adjunct to one or more other medications. Its efficacy against other viruses, including those that cause viral hemorrhagic fever, has not been conclusively demonstrated, and it is not approved in the United States for treatment of viruses other than HCV. [7] [6]

Hepatitis C

For chronic hepatitis C, the oral (capsule or tablet) form of ribavirin is used only in combination with pegylated interferon alfa. [6] [12] [13] [14] [15] Statins may improve this combination's efficacy in treating hepatitis C. [16] When possible, genotyping of the specific viral strain is done; ribavirin is only used as a dose-escalating [lower-alpha 1] adjuvant to specific combinations of genotypes and other medications. [17]


Acute hepatitis C infection (within the first 6 months) often does not require immediate treatment, as many infections eventually resolve without treatment. [18] When the decision is made to treat acute hepatitis C, ribavirin may be used as an adjunct to several drug combinations. [17] However, other medications are preferred. [17] [18]

Viral hemorrhagic fever

Ribavirin is the only known treatment for a variety of viral hemorrhagic fevers, including Lassa fever, Crimean-Congo hemorrhagic fever, Venezuelan hemorrhagic fever, and Hantavirus infection, although data regarding these infections are scarce and the drug might be effective only in early stages. [19] [20] [21] [22] It is noted by the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) that "Ribavirin has poor in vitro and in vivo activity against the filoviruses (Ebola [23] and Marburg) and the flaviviruses (dengue, yellow fever, Omsk hemorrhagic fever, and Kyasanur forest disease)" [24] The aerosol form has been used in the past to treat respiratory syncytial virus-related diseases in children, although the evidence to support this is rather weak. [25]

Despite questions surrounding its efficacy, ribavirin remains the only antiviral known to be effective in treating Lassa fever. [26]

It has been used (in combination with ketamine, midazolam, and amantadine) in treatment of rabies. [27]

Experimental uses

Experimental data indicate that ribavirin may have useful activity against canine distemper and poxviruses. [28] [29] Ribavirin has also been used as a treatment for herpes simplex virus. One small study found that ribavirin treatment reduced the severity of herpes outbreaks and promoted recovery, as compared with placebo treatment. [30] Another study found that ribavirin potentiated the antiviral effect of acyclovir. [31]

Some interest has been seen in its possible use as a treatment for cancers with elevated eukaryotic translation initiation factor eIF4E, especially acute myeloid leukemia (AML) as well as in head and neck cancers. [32] [33] [34] [35] Ribavirin targeted eIF4E in AML patients in monotherapy and combination studies and this corresponded to objective clinical responses including complete remissions. [36] [37] [38] Ribavirin resistance in AML patients arose leading to loss of eIF4E targeting and relapse. Resistance was caused by deactivation of ribavirin through its glucuronidation in AML cells or impaired drug entry/retention in the AML cells. [39] There may be additional forms of ribavirin resistance displayed by cancer cells. In HPV related oropharyngeal cancers, ribavirin reduced levels of phosphorylated form of eIF4E in some patients. [35] The best response here was stable disease but another head and neck study had more promising results. [34]

Adverse effects

The medication has two FDA "black box" warnings: One raises concerns that use before or during pregnancy by either sex may result in birth defects in the baby, and the other is regarding the risk of red blood cell breakdown. [40]

Ribavirin should not be given with zidovudine because of the increased risk of anemia; [41] concurrent use with didanosine should likewise be avoided because of an increased risk of mitochondrial toxicity. [42]

Mechanisms of action

It is a guanosine (ribonucleic) analog used to stop viral RNA synthesis and viral mRNA capping, thus, it is a nucleoside analog. Ribavirin is a prodrug, which when metabolized resembles purine RNA nucleotides. In this form, it interferes with RNA metabolism required for viral replication. Over five direct and indirect mechanisms have been proposed for its mechanism of action. [43] The enzyme inosine triphosphate pyrophosphatase (ITPase) dephosphorylates ribavirin triphosphate in vitro to ribavirin monophosphate, and ITPase reduced enzymatic activity present in 30% of humans potentiates mutagenesis in hepatitis C virus. [44]

RNA viruses

Ribavirin's amide group can make the native nucleoside drug resemble adenosine or guanosine, depending on its rotation. For this reason, when ribavirin is incorporated into RNA, as a base analog of either adenine or guanine, it pairs equally well with either uracil or cytosine, inducing mutations in RNA-dependent replication in RNA viruses. Such hypermutation can be lethal to RNA viruses. [45] [46]

DNA viruses

Neither of these mechanisms explains ribavirin's effect on many DNA viruses, which is more of a mystery, especially given the complete inactivity of ribavirin's 2' deoxyribose analogue, which suggests that the drug functions only as an RNA nucleoside mimic, and never a DNA nucleoside mimic. Ribavirin 5'-monophosphate inhibits cellular inosine monophosphate dehydrogenase, thereby depleting intracellular pools of GTP. [47] [ failed verification ]

eIF4E targeting in cancer

The eukaryotic translation initiation factor eIF4E plays multiple roles in RNA metabolism with translation being the best described. Biophysical and NMR studies first revealed that ribavirin directly bound the eIF4E,  providing another mechanism for its action. [48] [49] [50] [39] 3H Ribavirin also interacts with eIF4E in cells. [39] [33] While inosine monophosphate dehydrogenase (IMPDH) presumably only binds the ribavirin monophosphate metabolite (RMP), eIF4E can bind ribavirin and with higher affinity ribavirin's phosphorylated forms. [48] [49] [33] In many cell lines, studies into steady state levels of metabolites indicate that ribavirin triphosphate (RTP) is more abundant than the RMP metabolite which is the IMPDH ligand. [51] [52] RTP binds to eIF4E in its cap-binding site as observed by NMR. [50] Ribavirin inhibits eIF4E activities in cells including in its RNA export, translation and oncogenic activities lines. [48] [49] [53] [54] [39] [55] [56] [57] [58] [59] [60] [61] [62] In AML patients treated with ribavirin, ribavirin blocked the nuclear import of eIF4E through interfering with its interaction with its nuclear importer, Importin 8, thereby impairing its nuclear activities. [63] [38] [37] [39] Clinical relapse in AML patients corresponded to loss of ribavirin binding leading to nuclear re-entry of eIF4E and re-emergence of its nuclear activities. [63] [38] [37] [39]

History and Culture

Ribavirin was first made in 1972 under the national cancer institute's Virus-Cancer program. [64] This was done by researchers from International Chemical and Nuclear Corporation including Roberts A. Smith, Joseph T. Witkovski and Roland K. Robins. [65] It was reported that ribavirin was active against a variety of RNA and DNA viruses in culture and in animals, without undue toxicity in the context of cancer chemotherapies. [66] By the late 1970s, the Virus-Cancer program was widely considered a failure, and the drug development was abandoned.[ citation needed ]

After the US Government announced that AIDS was caused by a retrovirus in 1984, drugs examined during the Virus-Cancer program and its focus on retroviruses were re-examined. Although the FDA first approved ribavirin as an antiviral in 1986, it was not indicated to treat HIV or AIDS. As a result, many people with AIDS sought to obtain black market ribavirin via buyer's clubs. The drug was approved for investigational use against hantavirus in the United States in 1993, but the results from a non-randomized uncontrolled trial were not encouraging: 71% of recipients became anemic and 47% died.

In 2002 with the SARS outbreak, early speculation focused on Ribavirin as a possible anti-SARS agent. [67] Early protocols adopted in Hong Kong adopted a "Hit Hard Hit Early" approach treating SARS with high doses of off-label steroids and Ribavirin. [68] Unfortunately, it later turned out this haphazard approach was at best ineffective and at worst fatal, with many deaths attributed to SARS caused by ribavirin toxicity. [69]

Names

Ribavirin is the INN and USAN, whereas tribavirin is the BAN. Brand names of generic forms include Copegus, Ribasphere, Rebetol. [1]

Derivatives

Ribavirin is possibly best viewed as a ribosyl purine analogue with an incomplete purine 6-membered ring. This structural resemblance historically prompted replacement of the 2' nitrogen of the triazole with a carbon (which becomes the 5' carbon in an imidazole), in an attempt to partly "fill out" the second ring--- but to no great effect. Such 5' imidazole riboside derivatives show antiviral activity with 5' hydrogen or halide, but the larger the substituent, the smaller the activity, and all proved less active than ribavirin. [70] Note that two natural products were already known with this imidazole riboside structure: substitution at the 5' carbon with OH results in pyrazofurin, an antibiotic with antiviral properties but unacceptable toxicity, and replacement with an amino group results in the natural purine synthetic precursor 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), which has only modest antiviral properties.[ citation needed ]

Taribavirin

The most successful ribavirin derivative to date is the 3-carboxamidine derivative of the parent 3-carboxamide, first reported in 1973 by J. T. Witkowski et al., [71] and now called taribavirin (former names "viramidine" and "ribamidine"). This drug shows a similar spectrum of antiviral activity to ribavirin, which is not surprising as it is now known to be a pro-drug for ribavirin. Taribavirin, however, has useful properties of less erythrocyte-trapping and better liver-targeting than ribavirin. The first property is due to taribavirin's basic amidine group which inhibits drug entry into RBCs, and the second property is probably due to increased concentration of the enzymes which convert amidine to amide in liver tissue. [72] Taribavirin completed phase III human trials in 2012. [73]

Notes

  1. Begins with a low dose, at or near the lowest point of the expected therapeutic index, and then the dose is progressively increased until achieving desired effects.

Related Research Articles

<span class="mw-page-title-main">Interferon</span> Signaling proteins released by host cells in response to the presence of pathogens

Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.

<span class="mw-page-title-main">Hepatitis C</span> Human viral infection

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver; it is a type of viral hepatitis. During the initial infection period, people often have mild or no symptoms. Early symptoms can include fever, dark urine, abdominal pain, and yellow tinged skin. The virus persists in the liver, becoming chronic, in about 70% of those initially infected. Early on, chronic infection typically has no symptoms. Over many years however, it often leads to liver disease and occasionally cirrhosis. In some cases, those with cirrhosis will develop serious complications such as liver failure, liver cancer, or dilated blood vessels in the esophagus and stomach.

<span class="mw-page-title-main">Viral hepatitis</span> Liver inflammation from a viral infection

Viral hepatitis is liver inflammation due to a viral infection. It may present in acute form as a recent infection with relatively rapid onset, or in chronic form, typically progressing from a long-lasting asymptomatic condition up to a decompensated hepatic disease and hepatocellular carcinoma (HCC).

<span class="mw-page-title-main">Hepatitis C virus</span> Species of virus

The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.

<span class="mw-page-title-main">Taribavirin</span> Antiviral drug

Taribavirin is an antiviral drug in Phase III human trials, but not yet approved for pharmaceutical use. It is a prodrug of ribavirin, active against a number of DNA and RNA viruses. Taribavirin has better liver-targeting than ribavirin, and has a shorter life in the body due to less penetration and storage in red blood cells. It is expected eventually to be the drug of choice for viral hepatitis syndromes in which ribavirin is active. These include hepatitis C and perhaps also hepatitis B and yellow fever.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is an antiviral medication for the treatment of influenza and COVID infections used in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

Pegylated interferon alfa-2b is a drug used to treat melanoma, as an adjuvant therapy to surgery. Also used to treat hepatitis C, it is no longer recommended due to poor efficacy and adverse side-effects. Subcutaneous injection is the preferred delivery method.

<span class="mw-page-title-main">EIF4E</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4E, also known as eIF4E, is a protein that in humans is encoded by the EIF4E gene.

miR-122

miR-122 is a miRNA that is conserved among vertebrate species. miR-122 is not present in invertebrates, and no close paralogs of miR-122 have been detected. miR-122 is highly expressed in the liver, where it has been implicated as a regulator of fatty-acid metabolism in mouse studies. Reduced miR-122 levels are associated with hepatocellular carcinoma. miR-122 also plays an important positive role in the regulation of hepatitis C virus replication.

<span class="mw-page-title-main">Interferon Lambda 3</span> Protein-coding gene in the species Homo sapiens

Interferon lambda 3 encodes the IFNL3 protein. IFNL3 was formerly named IL28B, but the Human Genome Organization Gene Nomenclature Committee renamed this gene in 2013 while assigning a name to the then newly discovered IFNL4 gene. Together with IFNL1 and IFNL2, these genes lie in a cluster on chromosomal region 19q13. IFNL3 shares ~96% amino-acid identity with IFNL2, ~80% identity with IFNL1 and ~30% identity with IFNL4.

Daclatasvir, sold under the brand name Daklinza, is an antiviral medication used in combination with other medications to treat hepatitis C (HCV). The other medications used in combination include sofosbuvir, ribavirin, and interferon, vary depending on the virus type and whether the person has cirrhosis. It is taken by mouth.

<span class="mw-page-title-main">Galidesivir</span> Antiviral drug

Galidesivir is an antiviral drug, an adenosine analog. It was developed by BioCryst Pharmaceuticals with funding from NIAID, originally intended as a treatment for hepatitis C, but subsequently developed as a potential treatment for deadly filovirus infections such as Ebola virus disease and Marburg virus disease, as well as Zika virus. Currently, galidesivir is under phase 1 human trial in Brazil for coronavirus.

<span class="mw-page-title-main">FGI-106</span> Chemical compound

FGI-106 is a broad-spectrum antiviral drug developed as a potential treatment for enveloped RNA viruses, in particular viral hemorrhagic fevers from the bunyavirus, flavivirus and filovirus families. It acts as an inhibitor which blocks viral entry into host cells. In animal tests FGI-106 shows both prophylactic and curative action against a range of deadly viruses for which few existing treatments are available, including the bunyaviruses hantavirus, Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus, the flavivirus dengue virus, and the filoviruses Ebola virus and Marburg virus.

<span class="mw-page-title-main">Beclabuvir</span> Chemical compound

Beclabuvir is an antiviral drug for the treatment of hepatitis C virus (HCV) infection that has been studied in clinical trials. In February 2017, Bristol-Myers Squibb began sponsoring a post-marketing trial of beclabuvir, in combination with asunaprevir and daclatasvir, to study the combination's safety profile with regard to liver function. From February 2014 to November 2016, a phase II clinical trial was conducted on the combination of asunaprevir/daclatasvir/beclabuvir on patients infected with both HIV and HCV. Furthermore, a recent meta-analysis of six published six clinical trials showed high response rates in HCV genotype 1-infected patients treated with daclatasvir, asunaprevir, and beclabuvir irrespective of ribavirin use, prior interferon-based therapy, or restriction on noncirrhotic patients, IL28B genotype, or baseline resistance-associated variants

<span class="mw-page-title-main">MK-608</span> Chemical compound

MK-608 is an antiviral drug, an adenosine analog. It was originally developed by Merck & Co. as a treatment for hepatitis C, but despite promising results in animal studies, it was ultimately unsuccessful in clinical trials. Subsequently it has been widely used in antiviral research and has shown activity against a range of viruses, including Dengue fever, tick-borne encephalitis virus, poliovirus, and most recently Zika virus, in both in vitro and animal models. Since it has already failed in human clinical trials previously, it is unlikely MK-608 itself will be developed as an antiviral medication, but the continuing lack of treatment options for these emerging viral diseases means that much research continues using MK-608 and related antiviral drugs.

<span class="mw-page-title-main">Celgosivir</span> Drug for hep-C

Celgosivir, in development by Migenix for the treatment of hepatitis C virus (HCV) infection, is an oral prodrug of the natural product castanospermine that inhibits alpha-glucosidase I, an enzyme that plays a critical role in viral maturation by initiating the processing of the N-linked oligosaccharides of viral envelope glycoproteins. Celgosivir is well absorbed in vitro and in vivo, and is rapidly converted to castanospermine. Celgosivir has a novel mechanism of action, and demonstrates broad antiviral activity in vitro.

<span class="mw-page-title-main">NITD008</span> Chemical compound

NITD008 is an antiviral drug classified as an adenosine analog. It was developed as a potential treatment for flavivirus infections and shows broad spectrum antiviral activity against many related viruses such as dengue virus, West Nile virus, yellow fever virus, Powassan virus, hepatitis C virus, Kyasanur Forest disease virus, Omsk hemorrhagic fever virus, and Zika virus. However, NITD008 proved too toxic in pre-clinical animal testing to be suitable for human trials, but it continues to be used in research to find improved treatments for emerging viral diseases.

<span class="mw-page-title-main">Interferon Lambda 4</span> Protein-coding gene in the species Homo sapiens

Interferon lambda 4 is one of the most recently discovered human genes and the newest addition to the interferon lambda protein family. This gene encodes the IFNL4 protein, which is involved in immune response to viral infection.

Merimepodib (VX-497) is a drug which acts as an inhibitor of the enzyme inosine monophosphate dehydrogenase, which is required for the synthesis of nucleotide bases containing guanine. This consequently inhibits synthesis of DNA and RNA, and results in antiviral and immunosuppressive effects. It progressed as far as Phase 2b human clinical trials against Hepatitis C but showed only modest benefits in comparison to existing treatments, however it continues to be researched, and also shows activity against other viral diseases such as Zika virus and foot and mouth disease virus.

Katherine Borden PhD FRSC is a Canadian researcher of Molecular Biology and Biochemistry at the University of Montreal in Quebec, Canada. She has worked on finding new cancer treatments using pre-existing drugs,. She uses a combination of biochemistry, structural biology, cell biological, and clinical studies to study RNA processing. Her work provided a series of transformative revelations into the role of dysregulated RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. Her studies demonstrated that dysregulation of this factor influenced multiple steps in RNA processing of thousands of RNAs simultaneously thereby reprogramming the cell to become more oncogenic. eIF4E impacts the extent of m7G RNA capping, splicing, export and/or translation of these RNAs based on the presence of cis-acting elements within the RNAs as well as induction of wide scale changes to the production of factors substantially modulated the RNA processing landscape within cells. Her work showed that modulating of many of these factors influence cell survival and cell motility contributing to cancer. Her studies also led to the finding that a substantial number of Acute Myeloid Leukemia (AML) patients were characterized by elevated eIF4E. This coupled to the discovery that eiF4E could bind to and be inhibited by an antiviral drug ribavirin led to the first clinical trials targeting eIF4E in patients. Indeed, these were also the first studies to target RNA translation or RNA export in humans. Targeting of eIF4E was safe and corresponded to objective clinical responses including remissions in patients. These studies also led to the discovery of a new form of drug resistance in patients, inducible drug glucuronidation. Drug glucuronidation impacts 50% of drugs usually through liver mediated drug deactivation. However, this work revealed that cancer cells could turn on the enzymes involved in this process. Her lab developed the means to target this inducible drug glucuronidation, with Vismodegib, and showed in patients this reduced levels of glucuronidation enzymes which corresponded to ribavirin activity, targeting of eIF4E and objective clinical responses. However, eventually patients become resistant to the Visomdegib and thus, new modalities are required to overcome this form of drug resistance long term. She has received many awards for this work including selected as a Stohlman Scholar of the Leukemia and Lymphoma Society USA (2005), Distinguished Scientist of the Canadian Society for Clinical Investigation (2011), CSMB Canadian Science Publishing Senior Investigator Award (2022) and was inducted as a fellow of the Royal Society of Canada in 2022.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 "Ribavirin". The American Society of Health-System Pharmacists. Archived from the original on 20 December 2016. Retrieved 8 December 2016.
  2. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  3. "Ribavirin (Ibavyr)". Catie. 2022. Retrieved 22 August 2022.
  4. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 Oct 2023.
  5. 1 2 3 4 5 "PRODUCT INFORMATION REBETOL (RIBAVIRIN) CAPSULES" (PDF). TGA eBusiness Services. Merck Sharp & Dohme (Australia) Pty Limited. 29 April 2013. Archived from the original on 16 August 2017. Retrieved 23 February 2014.
  6. 1 2 3 Safrin S (2024). "Chapter 49: Antiviral Agents". Katzung's Basic & Clinical Pharmacology (16th ed.). McGraw Hill. Other antiviral agents: Ribavirin.
  7. 1 2 "Copegus: Package Insert". Drugs.com. 2023-03-27. Retrieved 2024-01-19.
  8. World Health Organization (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. World Health Organization. p. 177. hdl: 10665/44053 . ISBN   9789241547659.
  9. Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 504. ISBN   9783527607495. Archived from the original on 2016-12-20.
  10. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  11. "Rebetol, Ribasphere (ribavirin) dosing, indications, interactions, adverse effects, and more". Medscape Reference. WebMD. Archived from the original on 28 February 2014. Retrieved 23 February 2014.
  12. Paeshuyse J, Dallmeier K, Neyts J (December 2011). "Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action". Current Opinion in Virology. 1 (6): 590–598. doi:10.1016/j.coviro.2011.10.030. PMID   22440916.
  13. Flori N, Funakoshi N, Duny Y, Valats JC, Bismuth M, Christophorou D, et al. (March 2013). "Pegylated interferon-α2a and ribavirin versus pegylated interferon-α2b and ribavirin in chronic hepatitis C : a meta-analysis". Drugs. 73 (3): 263–277. doi:10.1007/s40265-013-0027-1. PMID   23436591. S2CID   46334977.
  14. Druyts E, Thorlund K, Wu P, Kanters S, Yaya S, Cooper CL, et al. (April 2013). "Efficacy and safety of pegylated interferon alfa-2a or alfa-2b plus ribavirin for the treatment of chronic hepatitis C in children and adolescents: a systematic review and meta-analysis". Clinical Infectious Diseases. 56 (7): 961–967. doi: 10.1093/cid/cis1031 . PMID   23243171.
  15. Zeuzem S, Poordad F (July 2010). "Pegylated-interferon plus ribavirin therapy in the treatment of CHC: individualization of treatment duration according to on-treatment virologic response". Current Medical Research and Opinion. 26 (7): 1733–1743. doi:10.1185/03007995.2010.487038. PMID   20482242. S2CID   206965239.
  16. Zhu Q, Li N, Han Q, Zhang P, Yang C, Zeng X, et al. (June 2013). "Statin therapy improves response to interferon alfa and ribavirin in chronic hepatitis C: a systematic review and meta-analysis". Antiviral Research. 98 (3): 373–379. doi:10.1016/j.antiviral.2013.04.009. PMID   23603497.
  17. 1 2 3 Chung RT, Ghany MG, Kim AY, Marks KM, Naggie S, Vargas HE, et al. (AASLD-IDSA HCV Guidance Panel) (October 2018). "Hepatitis C Guidance 2018 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection". Clinical Infectious Diseases. 67 (10): 1477–1492. doi:10.1093/cid/ciy585. PMC   7190892 . PMID   30215672.
  18. 1 2 Pawlotsky J, Negro F, Aghemo A, Berenguer M, Dalgard O, Dusheiko G, et al. (August 2018). "EASL Recommendations on Treatment of Hepatitis C 2018". Journal of Hepatology. 69 (2): 461–511. doi:10.1016/j.jhep.2018.03.026. PMID   29650333.
  19. Steckbriefe seltener und importierter Infektionskrankheiten [Characteristics of rare and imported infectious diseases](PDF). Berlin: Robert Koch Institute. 2006. ISBN   978-3-89606-095-2. Archived from the original (PDF) on 2011-09-29.
  20. Ascioglu S, Leblebicioglu H, Vahaboglu H, Chan KA (June 2011). "Ribavirin for patients with Crimean-Congo haemorrhagic fever: a systematic review and meta-analysis". The Journal of Antimicrobial Chemotherapy. 66 (6): 1215–1222. doi: 10.1093/jac/dkr136 . PMID   21482564.
  21. Bausch DG, Hadi CM, Khan SH, Lertora JJ (December 2010). "Review of the literature and proposed guidelines for the use of oral ribavirin as postexposure prophylaxis for Lassa fever". Clinical Infectious Diseases. 51 (12): 1435–1441. doi:10.1086/657315. PMC   7107935 . PMID   21058912.
  22. Soares-Weiser K, Thomas S, Thomson G, Garner P (July 2010). "Ribavirin for Crimean-Congo hemorrhagic fever: systematic review and meta-analysis". BMC Infectious Diseases. 10: 207. doi: 10.1186/1471-2334-10-207 . PMC   2912908 . PMID   20626907.
  23. Goeijenbier M, van Kampen JJ, Reusken CB, Koopmans MP, van Gorp EC (November 2014). "Ebola virus disease: a review on epidemiology, symptoms, treatment and pathogenesis". The Netherlands Journal of Medicine. 72 (9): 442–448. PMID   25387613. Archived from the original on 2014-11-29.
  24. Medical Management of Biological Casualties Handbook. United States Government Printing Office. 2011. p. 115. ISBN   978-0-16-090015-0.
  25. Ventre K, Randolph AG (January 2007). Ventre K (ed.). "Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children". The Cochrane Database of Systematic Reviews (1): CD000181. doi:10.1002/14651858.CD000181.pub3. PMID   17253446.
  26. "Treatment | Lassa Fever | CDC". 2023-09-26. Archived from the original on 2023-09-26. Retrieved 2024-01-20.
  27. Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J (May 2013). "Human rabies: neuropathogenesis, diagnosis, and management". The Lancet. Neurology. 12 (5): 498–513. doi:10.1016/S1474-4422(13)70038-3. PMID   23602163. S2CID   1798889.
  28. Elia G, Belloli C, Cirone F, Lucente MS, Caruso M, Martella V, et al. (February 2008). "In vitro efficacy of ribavirin against canine distemper virus". Antiviral Research. 77 (2): 108–113. doi:10.1016/j.antiviral.2007.09.004. PMID   17949825.
  29. Baker RO, Bray M, Huggins JW (January 2003). "Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections". Antiviral Research. 57 (1–2): 13–23. doi:10.1016/S0166-3542(02)00196-1. PMC   9533837 . PMID   12615299.
  30. Bierman SM, Kirkpatrick W, Fernandez H (1981). "Clinical efficacy of ribavirin in the treatment of genital herpes simplex virus infection". Chemotherapy. 27 (2): 139–145. doi:10.1159/000237969. PMID   7009087.
  31. Pancheva SN (September 1991). "Potentiating effect of ribavirin on the anti-herpes activity of acyclovir". Antiviral Research. 16 (2): 151–161. doi:10.1016/0166-3542(91)90021-I. PMID   1665959.
  32. Kast RE (November–December 2002). "Ribavirin in cancer immunotherapies: controlling nitric oxide helps generate cytotoxic lymphocyte". Cancer Biology & Therapy. 1 (6): 626–630. doi: 10.4161/cbt.310 . PMID   12642684. S2CID   24010404.
  33. 1 2 3 Borden KL, Culjkovic-Kraljacic B (October 2010). "Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond?". Leukemia & Lymphoma. 51 (10): 1805–1815. doi:10.3109/10428194.2010.496506. PMC   2950216 . PMID   20629523.
  34. 1 2 Dunn LA, Fury MG, Sherman EJ, Ho AA, Katabi N, Haque SS, et al. (February 2018). "Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer". Head & Neck. 40 (2): 233–241. doi:10.1002/hed.24938. PMC   6760238 . PMID   28963790.
  35. 1 2 Burman B, Drutman SB, Fury MG, Wong RJ, Katabi N, Ho AL, et al. (May 2022). "Pharmacodynamic and therapeutic pilot studies of single-agent ribavirin in patients with human papillomavirus-related malignancies". Oral Oncology. 128: 105806. doi:10.1016/j.oraloncology.2022.105806. PMC   9788648 . PMID   35339025.
  36. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. (July 2009). "Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin". Blood. 114 (2): 257–260. doi: 10.1182/blood-2009-02-205153 . PMID   19433856. S2CID   28957125.
  37. 1 2 3 Assouline S, Culjkovic-Kraljacic B, Bergeron J, Caplan S, Cocolakis E, Lambert C, et al. (January 2015). "A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E". Haematologica. 100 (1): e7–e9. doi:10.3324/haematol.2014.111245. PMC   4281321 . PMID   25425688.
  38. 1 2 3 Assouline S, Gasiorek J, Bergeron J, Lambert C, Culjkovic-Kraljacic B, Cocolakis E, et al. (March 2023). "Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine". Haematologica. 108 (11): 2946–2958. doi: 10.3324/haematol.2023.282791 . PMC   10620574 . PMID   36951168. S2CID   257733013.
  39. 1 2 3 4 5 6 Zahreddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, et al. (July 2014). "The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation". Nature. 511 (7507): 90–93. Bibcode:2014Natur.511...90Z. doi:10.1038/nature13283. PMC   4138053 . PMID   24870236.
  40. "Copedgus" (PDF). FDA.gov. Archived (PDF) from the original on 3 November 2014. Retrieved 16 April 2017.
  41. Alvarez D, Dieterich DT, Brau N, Moorehead L, Ball L, Sulkowski MS (October 2006). "Zidovudine use but not weight-based ribavirin dosing impacts anaemia during HCV treatment in HIV-infected persons". Journal of Viral Hepatitis. 13 (10): 683–689. doi:10.1111/j.1365-2893.2006.00749.x. PMID   16970600. S2CID   21474337.
  42. Bani-Sadr F, Carrat F, Pol S, Hor R, Rosenthal E, Goujard C, et al. (Anrs Hc02-Ribavic Study Team) (September 2005). "Risk factors for symptomatic mitochondrial toxicity in HIV/hepatitis C virus-coinfected patients during interferon plus ribavirin-based therapy". Journal of Acquired Immune Deficiency Syndromes. 40 (1): 47–52. doi: 10.1097/01.qai.0000174649.51084.46 . PMID   16123681. S2CID   9364536.
  43. Graci JD, Cameron CE (January 2006). "Mechanisms of action of ribavirin against distinct viruses". Reviews in Medical Virology. 16 (1): 37–48. doi:10.1002/rmv.483. PMC   7169142 . PMID   16287208.
  44. Nyström K, Wanrooij PH, Waldenström J, Adamek L, Brunet S, Said J, et al. (October 2018). "Inosine Triphosphate Pyrophosphatase Dephosphorylates Ribavirin Triphosphate and Reduced Enzymatic Activity Potentiates Mutagenesis in Hepatitis C Virus". Journal of Virology. 92 (19): 01087–18. doi: 10.1128/JVI.01087-18 . PMC   6146798 . PMID   30045981.
  45. Ortega-Prieto AM, Sheldon J, Grande-Pérez A, Tejero H, Gregori J, Quer J, et al. (2013). Vartanian JP (ed.). "Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis". PLOS ONE. 8 (8): e71039. Bibcode:2013PLoSO...871039O. doi: 10.1371/journal.pone.0071039 . PMC   3745404 . PMID   23976977.
  46. Crotty S, Cameron C, Andino R (February 2002). "Ribavirin's antiviral mechanism of action: lethal mutagenesis?". Journal of Molecular Medicine. 80 (2): 86–95. doi:10.1007/s00109-001-0308-0. PMID   11907645. S2CID   52851826.
  47. Leyssen P, De Clercq E, Neyts J (April 2006). "The anti-yellow fever virus activity of ribavirin is independent of error-prone replication". Molecular Pharmacology. 69 (4): 1461–1467. doi:10.1124/mol.105.020057. PMID   16421290. S2CID   8158590.
  48. 1 2 3 Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL (December 2004). "Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap". Proceedings of the National Academy of Sciences of the United States of America. 101 (52): 18105–18110. Bibcode:2004PNAS..10118105K. doi: 10.1073/pnas.0406927102 . PMC   539790 . PMID   15601771.
  49. 1 2 3 Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, et al. (December 2005). "Further evidence that ribavirin interacts with eIF4E". RNA. 11 (12): 1762–1766. doi:10.1261/rna.2238705. PMC   1370864 . PMID   16251386.
  50. 1 2 Volpon L, Osborne MJ, Zahreddine H, Romeo AA, Borden KL (May 2013). "Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate". Biochemical and Biophysical Research Communications. 434 (3): 614–619. doi:10.1016/j.bbrc.2013.03.125. PMC   3659399 . PMID   23583375.
  51. Smee DF, Matthews TR (July 1986). "Metabolism of ribavirin in respiratory syncytial virus-infected and uninfected cells". Antimicrobial Agents and Chemotherapy. 30 (1): 117–121. doi:10.1128/AAC.30.1.117. PMC   176447 . PMID   3752974.
  52. Page T, Connor JD (January 1990). "The metabolism of ribavirin in erythrocytes and nucleated cells". The International Journal of Biochemistry. 22 (4): 379–383. doi:10.1016/0020-711X(90)90140-X. PMID   2159925.
  53. Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R, et al. (May 2011). "Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer". Clinical Cancer Research. 17 (9): 2874–2884. doi:10.1158/1078-0432.CCR-10-2334. PMC   3086959 . PMID   21415224.
  54. Bollmann F, Fechir K, Nowag S, Koch K, Art J, Kleinert H, et al. (April 2013). "Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport". Nitric Oxide. 30: 49–59. doi:10.1016/j.niox.2013.02.083. PMID   23471078.
  55. Shi F, Len Y, Gong Y, Shi R, Yang X, Naren D, et al. (2015-08-28). Eaves CJ (ed.). "Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia". PLOS ONE. 10 (8): e0136746. Bibcode:2015PLoSO..1036746S. doi: 10.1371/journal.pone.0136746 . PMC   4552648 . PMID   26317515.
  56. Zismanov V, Attar-Schneider O, Lishner M, Heffez Aizenfeld R, Tartakover Matalon S, Drucker L (February 2015). "Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E". International Journal of Oncology. 46 (2): 860–870. doi: 10.3892/ijo.2014.2774 . PMID   25422161.
  57. Dai D, Chen H, Tang J, Tang Y (January 2017). "Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma". Biochemical and Biophysical Research Communications. 482 (4): 1259–1264. doi:10.1016/j.bbrc.2016.12.025. PMID   27932243.
  58. Volpin F, Casaos J, Sesen J, Mangraviti A, Choi J, Gorelick N, et al. (May 2017). "Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic". Oncogene. 36 (21): 3037–3047. doi:10.1038/onc.2016.457. PMID   27941882. S2CID   21655102.
  59. Wang G, Li Z, Li Z, Huang Y, Mao X, Xu C, et al. (December 2017). "Targeting eIF4E inhibits growth, survival and angiogenesis in retinoblastoma and enhances efficacy of chemotherapy". Biomedicine & Pharmacotherapy. 96: 750–756. doi:10.1016/j.biopha.2017.10.034. PMID   29049978.
  60. Xi C, Wang L, Yu J, Ye H, Cao L, Gong Z (September 2018). "Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer". Biochemical and Biophysical Research Communications. 503 (4): 2286–2292. doi:10.1016/j.bbrc.2018.06.150. PMID   29959920. S2CID   49634908.
  61. Jin J, Xiang W, Wu S, Wang M, Xiao M, Deng A (March 2019). "Targeting eIF4E signaling with ribavirin as a sensitizing strategy for ovarian cancer". Biochemical and Biophysical Research Communications. 510 (4): 580–586. doi:10.1016/j.bbrc.2019.01.117. PMID   30739792. S2CID   73419809.
  62. Urtishak KA, Wang LS, Culjkovic-Kraljacic B, Davenport JW, Porazzi P, Vincent TL, et al. (March 2019). "Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia". Oncogene. 38 (13): 2241–2262. doi:10.1038/s41388-018-0567-7. PMC   6440839 . PMID   30478448.
  63. 1 2 Volpon L, Culjkovic-Kraljacic B, Osborne MJ, Ramteke A, Sun Q, Niesman A, et al. (May 2016). "Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E". Proceedings of the National Academy of Sciences of the United States of America. 113 (19): 5263–5268. Bibcode:2016PNAS..113.5263V. doi: 10.1073/pnas.1524291113 . PMC   4868427 . PMID   27114554.
  64. Snell NJ (August 2001). "Ribavirin--current status of a broad spectrum antiviral agent". Expert Opinion on Pharmacotherapy. 2 (8): 1317–1324. doi:10.1517/14656566.2.8.1317. PMID   11585000. S2CID   46564870.
  65. "Ribavirin History". News-Medical.net. 12 April 2010. Archived from the original on 2016-03-02. Retrieved 2016-02-19.
  66. Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK (August 1972). "Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide". Science. 177 (4050): 705–706. Bibcode:1972Sci...177..705S. doi:10.1126/science.177.4050.705. PMID   4340949. S2CID   43106875.
  67. Koren G, King S, Knowles S, Phillips E (May 2003). "Ribavirin in the treatment of SARS: A new trick for an old drug?". CMAJ. 168 (10): 1289–1292. PMC   154189 . PMID   12743076.
  68. Leung CW, Kwan YW, Ko PW, Chiu SS, Loung PY, Fong NC, et al. (June 2004). "Severe acute respiratory syndrome among children". Pediatrics. 113 (6): e535–e543. doi:10.1542/peds.113.6.e535. PMID   15173534.
  69. Crowe D (February 2020). "SARS - Sterioid and Ribavirin Scandal". Unpublished Preprint. doi:10.13140/RG.2.2.25308.74881 via researchgate.net. Author died before publication
  70. Smith RA, Kirkpatrick W, eds. (1980). "Ribavirin: structure and antiviral activity relationships". Ribavirin: A Broad Spectrum Antiviral Agent. New York: Academic Press. pp. 1–21.
  71. Witkowski JT, Robins RK, Khare GP, Sidwell RW (August 1973). "Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides". Journal of Medicinal Chemistry. 16 (8): 935–937. doi:10.1021/jm00266a014. PMID   4355593.
  72. Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF (October 2005). "In vitro and in vivo influenza virus-inhibitory effects of viramidine". Antiviral Research. 68 (1): 10–17. doi:10.1016/j.antiviral.2005.06.003. PMID   16087250.
  73. U.S. National Library of Medicine (2012-06-22). Study of Viramidine to Ribavirin in Patients With Chronic Hepatitis C Who Are Treatment Naive (VISER2) (Report). National Institutes of Health. Retrieved 2021-03-25.