Brincidofovir

Last updated

Brincidofovir
Brincidofovir structure.svg
Clinical data
Trade names Tembexa
Other namesCMX001; Cidofovir-HDP; hexadecyloxypropyl-cidofovir
License data
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Identifiers
  • ({[(2S)-1-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxypropan-2-yl]oxy}methyl)[3-(hexadecyloxy)propoxy]phosphinic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C27H52N3O7P
Molar mass 561.701 g·mol−1
3D model (JSmol)
  • CCCCCCCCCCCCCCCCOCCCOP(=O)(O)CO[C@H](CO)Cn1ccc(N)nc1=O
  • InChI=1S/C27H52N3O7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-19-35-20-16-21-37-38(33,34)24-36-25(23-31)22-30-18-17-26(28)29-27(30)32/h17-18,25,31H,2-16,19-24H2,1H3,(H,33,34)(H2,28,29,32)/t25-/m0/s1
  • Key:WXJFKKQWPMNTIM-VWLOTQADSA-N

Brincidofovir, sold under the brand name Tembexa, is an antiviral drug used to treat smallpox. Brincidofovir is a prodrug of cidofovir. [4] Conjugated to a lipid, the compound is designed to release cidofovir intracellularly, allowing for higher intracellular and lower plasma concentrations of cidofovir, effectively increasing its activity against dsDNA viruses, as well as oral bioavailability. [5]

Contents

The most common side effects include diarrhea, nausea, vomiting, and abdominal pain. [3] It carries an FDA-mandated black box warning of an increased risk of death with extended use. [6] [7] Brincidofovir was approved for medical use in the United States in June 2021.

Medical uses

Brincidofovir is indicated for the treatment of human smallpox disease caused by the variola virus. [3] [8]

Mechanism of action

Brincidofovir is a prodrug that is composed of cidofovir conjugated with a lipid molecule. The lipid aspect of the molecule takes on the action of endogenous lysophosphatidyl choline, which then is able to enter cells in the body which are infected with smallpox. [9] Once the infected cell takes in the drug, the drug cleaves to generate cidofovir. Cidofovir is then consequently phosphorylated to yield cidofovir diphosphate, which is the active drug. Cidofovir diphosphate inhibits the variola virus' DNA polymerase-mediated DNA synthesis. The drug acts as an acyclic nucleotide and incorporates itself into the viral DNA chain, which then stops viral DNA synthesis. [10]

Pharmacokinetics

The oral bioavailability of Brincidofovir is 13.4% as a tablet and 16.8% in a suspension. [9] The metabolism of the drug is as such: once the drug enters the target infected cell, Brincidofovir's phosphodiester bond is then hydrolyzed to generate cidofovir which is then phosphorylated to the active cidofovir diphosphate. The volume of distribution of the drug is 1230 L. [9]

History

Because smallpox is eradicated, the effectiveness of brincidofovir was studied in animals infected with viruses that are closely related to the variola virus. [3] Effectiveness was determined by measuring animals' survival at the end of the studies. [3]

Safety information to support approval of brincidofovir was derived from clinical trials of the drug for a non-smallpox indication, primarily from patients who received hematopoietic stem cell transplants. [3]

The U.S. Food and Drug Administration (FDA) granted the application for brincidofovir priority review, fast track, and orphan drug designations. [3] The FDA approved brincidofovir under the agency's Animal Rule, which allows findings from adequate and well-controlled animal efficacy studies to serve as the basis of an approval when it is not feasible or ethical to conduct efficacy trials in humans. [3]

Expanded access ethical considerations

Brincidofovir (CMX001) was the subject of widespread social media campaigning in 2014, which was then picked up by national news sources about a boy with an adenovirus infection following a bone marrow transplant. [11] The family requested legal access to the still-unapproved drug outside of any clinical trial, and Chimerix initially denied the request. After a short and intense media campaign, Chimerix got permission from the FDA to start a limited open-label trial which allowed the boy to receive the drug. [11] This media event sparked a debate on the ethics of using social media, the allocation of limited resources of a small company, and the emphasis on the individual over the group. The new use of any drug has the potential to interfere with the process to get the drug approved and widely marketed, through means such as consuming limited staff time that may be needed elsewhere – staff time that has the potential to save thousands of lives in the long-term, rather than one life now – overwhelming manufacturing capabilities, or by causing adverse effects or even death. [11] These adverse events are more likely during these programs, because the people seeking access are usually much sicker than most, and problems experienced by these people can result in an unfavorable and inaccurate perception of the drug's safety profile. [11] In this case, the boy recovered from the infection in 2014, and died in 2016 from complications of cancer. [12]

Brincidofovir is one of several experimental drugs administered to a small number of patients to treat Ebola virus disease during the 2014 outbreak. The WHO published a report on the ethics of using unregistered interventions to treat Ebola, where they concluded that "In the particular context of the current Ebola outbreak in West Africa, it is ethically acceptable to offer unproven interventions that have shown promising results in the laboratory and in animal models but have not yet been evaluated for safety and efficacy in humans as potential treatment or prevention." [13]

Research

Brincidofovir is under investigation for the treatment of cytomegalovirus, adenovirus, poxvirus, and ebolavirus infections. [14] It has been used off-label for the treatment of monkeypox. [15]

Adenovirus and cytomegalovirus

As of 2014, brincidofovir is in Phase III clinical trials for use in humans against cytomegalovirus and adenovirus. Preliminary safety data from a database of 1000 patients supported progression into later phase trials, [16] Chimerix announced in December 2015 that the Phase III trials for use of the drug in preventing cytomegalovirus infection in stem cell transplant patients had failed, and in February 2016 shut down two other late-stage trials for use of the drug in preventing infection after kidney transplants. Brincidofovir is not yet FDA approved for adenovirus or cytomegalovirus due to lack of efficacy in clinical trials. [17] In a trial of brincidofovir for patients with CMV brincidofovir was associated with a 15.5% week 24 all-cause mortality compared with 10.1% among placebo recipients. Additionally brincidofovir was associated with increased serious adverse events (57.1% versus 37.6%) compared with placebo. [17] Brincidofovir was initially offered via an FDA expanded access trial; however as of 9 May 2019, Chimerix discontinued clinical trials of brincidofovir for the treatment of adenovirus and discontinued the expanded access program in 2019. [18]

Ebola

After initial studies by the Centers for Disease Control and Prevention (CDC, Atlanta, Georgia, US) in cell culture models, [19] on 6 October 2014, Chimerix received an FDA authorization for emergency investigational new drug applications of brincidofovir for the treatment of Ebola virus disease. Brincidofovir was administered to the first patient diagnosed in the Ebola virus disease outbreak in the US in 2014. [20] [21] The patient was given the drug starting six days after hospital admission when he was already critically ill; he died four days later. [22] [23] Brincidofovir was also given to Ebola patient Ashoka Mukpo at the Nebraska Medical Center, who had developed the disease and then was pronounced Ebola-free and released from the center on 22 October 2014. [24]

In October 2014, Chimerix reported it had been given approval by the FDA to start Phase 2 trials in patients infected with ebolaviruses for brincidofovir's safety, tolerability, and efficacy. [25] Organised by a team of scientists at the University of Oxford, including Peter Horby, Jake Dunning, Laura Merson and Trudie Lang, [26] a trial commenced during January 2015 in Liberia, [27] but was subsequently discontinued. Because of a lack of suitable subjects in Liberia, Oxford University and Médecins Sans Frontières planned to extend the trial to Sierra Leone, where there were still Ebola cases; but on 30 January 2015, the manufacturer decided to withdraw support for the trial and end discussion of future trials. [28] [29]

Animals

In animal trials brincidofovir has shown activity against cytomegalovirus, adenoviruses, BK virus, poxvirus es, and herpes simplex viruses. [4] [30] Brincidofovir appears to have potential for the treatment of Ebola virus disease, which is somewhat paradoxical, as ebolaviruses are RNA viruses and thus do not contain DNA as the above-mentioned viruses. [19] [31]

Related Research Articles

<span class="mw-page-title-main">Ribavirin</span> Antiviral medication

Ribavirin, also known as tribavirin, is an antiviral medication used to treat RSV infection, hepatitis C and some viral hemorrhagic fevers. For hepatitis C, it is used in combination with other medications such as simeprevir, sofosbuvir, peginterferon alfa-2b or peginterferon alfa-2a. It can also be used for viral hemorrhagic fevers, specifically for Lassa fever, Crimean–Congo hemorrhagic fever, and Hantavirus infection with exceptions for Ebola or Marburg infections. Ribavirin is usually taken orally or inhaled. Despite widespread usage, it has faced scrutiny in 2010 because of lack of efficacy in treating viral infections as it has historically been prescribed for.

<span class="mw-page-title-main">Cidofovir</span> Antiviral drug

Cidofovir, brand name Vistide, is a topical or injectable antiviral medication primarily used as a treatment for cytomegalovirus (CMV) retinitis in people with AIDS.

<span class="mw-page-title-main">Ganciclovir</span> Chemical compound

Ganciclovir, sold under the brand name Cytovene among others, is an antiviral medication used to treat cytomegalovirus (CMV) infections.

Orthopoxvirus is a genus of viruses in the family Poxviridae and subfamily Chordopoxvirinae. Vertebrates, including mammals and humans, and arthropods serve as natural hosts. There are 12 species in this genus. Diseases associated with this genus include smallpox, cowpox, horsepox, camelpox, and mpox. The most widely known member of the genus is Variola virus, which causes smallpox. It was eradicated globally by 1977, through the use of Vaccinia virus as a vaccine. The most recently described species is the Alaskapox virus, first isolated in 2015.

<span class="mw-page-title-main">Foscarnet</span> Chemical compound

Foscarnet (phosphonomethanoic acid), known by its brand name Foscavir, is an antiviral medication which is primarily used to treat viral infections involving the Herpesviridae family. It is classified as a pyrophosphate analog DNA polymerase inhibitor. Foscarnet is the conjugate base of a chemical compound with the formula HO2CPO3H2 (Trisodium phosphonoformate).

<i>Human betaherpesvirus 5</i> Species of virus

Human betaherpesvirus 5, also called human cytomegalovirus (HCMV,HHV-5), is a species of virus in the genus Cytomegalovirus, which in turn is a member of the viral family known as Herpesviridae or herpesviruses. It is also commonly called CMV. Within Herpesviridae, HCMV belongs to the Betaherpesvirinae subfamily, which also includes cytomegaloviruses from other mammals. CMV is a double-stranded DNA virus.

<span class="mw-page-title-main">Nitazoxanide</span> Broad-spectrum antiparasitic and antiviral medication

Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.

A Cytomegalovirus vaccine is a vaccine to prevent cytomegalovirus (CMV) infection or curb virus re-activation in persons already infected. Challenges in developing a vaccine include adeptness of CMV in evading the immune system and limited animal models. As of 2018 no such vaccine exists, although a number of vaccine candidates are under investigation. They include recombinant protein, live attenuated, DNA and other vaccines.

<span class="mw-page-title-main">Maribavir</span> Antiviral drug

Maribavir, sold under the brand name Livtencity, is an antiviral medication that is used to treat post-transplant cytomegalovirus (CMV). Maribavir is a cytomegalovirus pUL97 kinase inhibitor that works by preventing the activity of human cytomegalovirus enzyme pUL97, thus blocking virus replication.

<span class="mw-page-title-main">Tecovirimat</span> Antiviral medication

Tecovirimat, sold under the brand name Tpoxx among others, is an antiviral medication with activity against orthopoxviruses such as smallpox and mpox. In 2018 it was the first antipoxviral drug approved in the United States.

<span class="mw-page-title-main">Pritelivir</span> Chemical compound

Pritelivir is a direct-acting antiviral drug in development for the treatment of herpes simplex virus infections (HSV). This is particularly important in immune compromised patients. It is currently in Phase III clinical development by the German biopharmaceutical company AiCuris Anti-infective Cures AG. US FDA granted fast track designation for pritelivir in 2017 and breakthrough therapy designation 2020.

<span class="mw-page-title-main">Letermovir</span> Antiviral drug

Letermovir is an antiviral drug for the treatment of cytomegalovirus (CMV) infections. It has been tested in CMV infected patients with allogeneic stem cell transplants and may also be useful for other patients with a compromised immune system such as those with organ transplants or HIV infections. The drug was initially developed by the anti-infective division at Bayer, which became AiCuris Anti-infective Cures AG through a spin-out and progressed the development to end of Phase 2 before the project was sold to Merck & Co for Phase 3 development and approval.

<span class="mw-page-title-main">Favipiravir</span> Experimental antiviral drug with potential activity against RNA viruses

Favipiravir, sold under the brand name Avigan among others, is an antiviral medication used to treat influenza in Japan. It is also being studied to treat a number of other viral infections, including SARS-CoV-2. Like the experimental antiviral drugs T-1105 and T-1106, it is a pyrazinecarboxamide derivative.

<span class="mw-page-title-main">ZMapp</span> Experimental treatment for Ebola virus disease

ZMapp is an experimental biopharmaceutical medication comprising three chimeric monoclonal antibodies under development as a treatment for Ebola virus disease. Two of the three components were originally developed at the Public Health Agency of Canada's National Microbiology Laboratory (NML), and the third at the U.S. Army Medical Research Institute of Infectious Diseases; the cocktail was optimized by Gary Kobinger, a research scientist at the NML and underwent further development under license by Mapp Biopharmaceutical. ZMapp was first used on humans during the Western African Ebola virus epidemic, having only been previously tested on animals and not yet subjected to a randomized controlled trial. The National Institutes of Health (NIH) ran a clinical trial starting in January 2015 with subjects from Sierra Leone, Guinea, and Liberia aiming to enroll 200 people, but the epidemic waned and the trial closed early, leaving it too statistically underpowered to give a meaningful result about whether ZMapp worked.

<span class="mw-page-title-main">Ebola vaccine</span> Vaccine against Ebola

Ebola vaccines are vaccines either approved or in development to prevent Ebola. As of 2022, there are only vaccines against the Zaire ebolavirus. The first vaccine to be approved in the United States was rVSV-ZEBOV in December 2019. It had been used extensively in the Kivu Ebola epidemic under a compassionate use protocol. During the early 21st century, several vaccine candidates displayed efficacy to protect nonhuman primates against lethal infection.

<span class="mw-page-title-main">Research in management of Ebola</span>

There is a cure for the Ebola virus disease that is currently approved for market the US government has inventory in the Strategic National Stockpile. For past and current Ebola epidemics, treatment has been primarily supportive in nature.

Ansuvimab, sold under the brand name Ebanga, is a monoclonal antibody medication for the treatment of Zaire ebolavirus (Ebolavirus) infection.

<span class="mw-page-title-main">COVID-19 drug development</span> Preventative and therapeutic medications for COVID-19 infection

COVID-19 drug development is the research process to develop preventative therapeutic prescription drugs that would alleviate the severity of coronavirus disease 2019 (COVID-19). From early 2020 through 2021, several hundred drug companies, biotechnology firms, university research groups, and health organizations were developing therapeutic candidates for COVID-19 disease in various stages of preclinical or clinical research, with 419 potential COVID-19 drugs in clinical trials, as of April 2021.

Atoltivimab/maftivimab/odesivimab, sold under the brand name Inmazeb, is a fixed-dose combination of three monoclonal antibodies for the treatment of Zaire ebolavirus. It contains atoltivimab, maftivimab, and odesivimab-ebgn and was developed by Regeneron Pharmaceuticals.

<span class="mw-page-title-main">Viral vector vaccine</span> Type of vaccine

A viral vector vaccine is a vaccine that uses a viral vector to deliver genetic material (DNA) that can be transcribed by the recipient's host cells as mRNA coding for a desired protein, or antigen, to elicit an immune response. As of April 2021, six viral vector vaccines, four COVID-19 vaccines and two Ebola vaccines, have been authorized for use in humans.

References

  1. "Regulatory Decision Summary for Tembexa". Drug and Health Products Portal. 11 December 2023. Retrieved 2 April 2024.
  2. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 October 2023.
  3. 1 2 3 4 5 6 7 8 "FDA approves drug to treat smallpox". U.S. Food and Drug Administration (FDA). 4 June 2021. Archived from the original on 8 June 2021. Retrieved 7 June 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. 1 2 "Brincidofovir (CMX001)". Chimerix. Archived from the original on 20 March 2014.
  5. Florescu DF, Keck MA (October 2014). "Development of CMX001 (Brincidofovir) for the treatment of serious diseases or conditions caused by dsDNA viruses". Expert Review of Anti-Infective Therapy. 12 (10): 1171–1178. doi:10.1586/14787210.2014.948847. PMID   25120093. S2CID   25854860.
  6. "FDA Tembexa Product Insert" (PDF).
  7. "DailyMed - TEMBEXA- brincidofovir tablet, film coated". dailymed.nlm.nih.gov.
  8. Birnkrant D (4 June 2021). "Brincidofovir: NDA Approval – Animal Efficacy" (PDF). Center for Drug Evaluation and Research. U.S. Food and Drug Administration. Archived (PDF) from the original on 8 June 2021. Retrieved 8 June 2021.
  9. 1 2 3 "Brincidofovir". go.drugbank.com. Archived from the original on 2 December 2021. Retrieved 7 June 2022.
  10. Patient Information (approved by the U.S. Food and Drug Administration)
  11. 1 2 3 4 Darrow JJ, Sarpatwari A, Avorn J, Kesselheim AS (January 2015). "Practical, legal, and ethical issues in expanded access to investigational drugs". The New England Journal of Medicine. 372 (3): 279–286. doi: 10.1056/nejmhle1409465 . PMID   25587952.
  12. "Josh Hardy, Va. Boy Who Inspired Social Media Campaign, Dies". NBC4 Washington. 22 October 2016. Archived from the original on 22 May 2018. Retrieved 21 May 2018.
  13. Report of an advisory panel to WHO. "Ethical considerations for use of unregistered interventions for Ebola virus disease". Archived from the original on 23 August 2014. Retrieved 8 October 2014.
  14. Lanier R, Trost L, Tippin T, Lampert B, Robertson A, Foster S, et al. (December 2010). "Development of CMX001 for the Treatment of Poxvirus Infections". Viruses. 2 (12): 2740–2762. doi: 10.3390/v2122740 . PMC   3077800 . PMID   21499452.
  15. Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, et al. (NHS England High Consequence Infectious Diseases (Airborne) Network) (May 2022). "Clinical features and management of human monkeypox: a retrospective observational study in the UK". The Lancet. Infectious Diseases. 22 (8): 1153–1162. doi:10.1016/S1473-3099(22)00228-6. PMC   9300470 . PMID   35623380. S2CID   249057804.
  16. "Brincidofovor for Ebola". Chimerix. Archived from the original on 9 October 2014.
  17. 1 2 Marty FM, Winston DJ, Chemaly RF, Mullane KM, Shore TB, Papanicolaou GA, et al. (SUPPRESS Trial Clinical Study Group) (February 2019). "A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial of Oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Cell Transplantation". Biology of Blood and Marrow Transplantation. 25 (2): 369–381. doi: 10.1016/j.bbmt.2018.09.038 . PMC   8196624 . PMID   30292744.
  18. "Chimerix Expanded Access". Chimerix, Inc. Archived from the original on 2 December 2020. Retrieved 24 September 2020.
  19. 1 2 McMullan LK, Flint M, Dyall J, Albariño C, Olinger GG, Foster S, et al. (January 2016). "The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus". Antiviral Research. 125: 71–78. doi:10.1016/j.antiviral.2015.10.010. PMID   26526586.
  20. "Chimerix Announces Emergency Investigational New Drug Applications for Brincidofovir Authorized by FDA for Patients With Ebola Virus Disease". Archived from the original on 6 October 2014. Retrieved 8 October 2014.
  21. Almendrala A (6 October 2014). "Dallas Ebola Patient Receives Experimental Drug". The Huffington Post. Archived from the original on 3 December 2014. Retrieved 8 October 2014.
  22. Berman M, Brown DL (8 October 2014). "Thomas Duncan, the Texas Ebola patient, has died". Washington Post. Archived from the original on 9 October 2014. Retrieved 8 October 2014.
  23. Cohen E (7 October 2014). "Dallas Ebola patient waited nearly a week for experimental drug; family claims bias". CNN. Archived from the original on 2 December 2014. Retrieved 8 October 2014.
  24. Wilson T (22 October 2014). "Young and Healthy: How NBC News Freelancer Ashoka Mukpo Survived Ebola". NBC News. Archived from the original on 26 December 2017. Retrieved 26 December 2017.
  25. Loftus P (16 October 2014). "Chimerix to Conduct Ebola Drug Trial: Drug Company Gets FDA Approval to Start Trial Immediately in Infected Patients". The Wall Street Journal. Archived from the original on 14 March 2016. Retrieved 13 March 2017.
  26. Boseley S (17 February 2015). "Ebola: the race to find a cure". The Guardian. ISSN   0261-3077. Archived from the original on 11 March 2020. Retrieved 16 March 2020.
  27. Giahyue JH (6 January 2015). "Trials of untested Ebola drugs begin in West Africa". Reuters. Archived from the original on 9 January 2015. Retrieved 6 January 2015.
  28. Kroll D (31 January 2015). "Chimerix Ends Brincidofovir Ebola Trials to Focus on Adenovirus and CMV". Forbes. Archived from the original on 8 July 2018. Retrieved 31 January 2015.
  29. "Ebola drug trial in Liberia halted". Médecins Sans Frontières. 3 February 2015. Archived from the original on 20 March 2015. Retrieved 7 March 2015.
  30. Quenelle DC, Lampert B, Collins DJ, Rice TL, Painter GR, Kern ER (November 2010). "Efficacy of CMX001 against herpes simplex virus infections in mice and correlations with drug distribution studies". The Journal of Infectious Diseases. 202 (10): 1492–1499. doi:10.1086/656717. PMC   2957530 . PMID   20923374.
  31. David Kroll (7 October 2014). "Chimerix's Brincidofovir Given To Dallas, Nebraska Ebola Patients". forbes.com. Archived from the original on 28 July 2016. Retrieved 25 August 2017.

Further reading