EIF4E

Last updated

EIF4E
Protein EIF4E PDB 1ej1.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases EIF4E , eukaryotic translation initiation factor 4E, AUTS19, CBP, EIF4E1, EIF4EL1, EIF4F, eIF-4E
External IDs OMIM: 133440; MGI: 95305; HomoloGene: 123817; GeneCards: EIF4E; OMA:EIF4E - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001130678
NM_001130679
NM_001968
NM_001331017

NM_007917
NM_001313980

RefSeq (protein)

NP_001124150
NP_001124151
NP_001317946
NP_001959

NP_001300909
NP_031943

Location (UCSC) Chr 4: 98.88 – 98.93 Mb Chr 3: 138.23 – 138.27 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Eukaryotic translation initiation factor 4E, also known as eIF4E, is a protein in humans encoded by the EIF4E gene. [5] [6] eIF4E plays a central role in translation initiation and is involved in regulating protein synthesis. Its activity influences a range of biological processes and disease states, making it an important target for therapeutic development, particularly in disorders characterized by aberrant protein production.

Discovery

eIF4E was discovered as a cytoplasmic cap binding protein functioning in translation by Witold Filipowicz at al. [7] In 1976. Two years later, in 1978, Sonenberg et al. [8] confirmed Filipowicz et al.’s findings by repeating the same experiments and adding a crosslinking chemical to increase the stability of the mRNA-protein complex. This was the foundation for our understanding of eukaryotic cap-dependent translation initiation. These findings have been confirmed by numerous scientists and reviewed in many articles.

Structure

EIF4E with 7MetGTP EIF4E with 7MetGTP.png
EIF4E with 7MetGTP
4EBP (red) bound to the alpha helices (cyan) of eIF4E. EIF4E.png
4EBP (red) bound to the alpha helices (cyan) of eIF4E.

Most eukaryotic cellular mRNAs are blocked at their 5'-ends with the 7-methyl-guanosine five-prime cap structure, m7GpppX (where X is any nucleotide). eIF4E is a eukaryotic translation initiation factor that binds specifically to this cap structure. It is a 24-kD polypeptide that exists both in a free form and as part of the eIF4F pre-initiation complex. [9] The other subunits of eIF4F are a 47-kD polypeptide, termed eIF4A, [10] that possesses ATPase and RNA helicase activities, and a 220-kD scaffolding polypeptide, eIF4G. [11] [12] [13] eIF4E is found in the nucleus of many mammalian cell types as well as in other species including yeast, drosophila and humans. [14] [15] eIF4E is found in nuclear bodies, some of which colocalize with PML nuclear bodies, and it also appears diffusely in the nucleoplasm. [16] [17] [18] [19]

Function

Cap-dependent translation initiation

The eukaryotic translation initiation factor eIF4E plays a central role in directing ribosomes to the 5′-cap structure of mRNAs, thereby facilitating efficient protein synthesis. It is often considered the rate-limiting component of the eukaryotic translation apparatus. [9] Many cellular mRNAs depend on eIF4E for translation into protein. In this role, eIF4E functions as part of the eIF4F complex, recruiting eIF4G and other factors necessary for translation initiation. However, certain viruses bypass this mechanism by cleaving eIF4G to remove the eIF4E-binding domain, thereby enabling cap-independent translation of viral RNAs. Similarly, some cellular mRNAs—such as those encoding heat shock proteins—utilize alternative translation initiation strategies, including internal ribosome entry site (IRES) elements or direct binding by other initiation factors such as eIF3d. [20] [21]

In contexts where eIF4E is bypassed or inhibited, other cap-binding proteins such as eIF3D, eIF3I, PARN, and the nuclear cap-binding complex (CBC) can mediate specialized translation pathways. [22] [23] [24]

mRNA Export

In addition to its cytoplasmic functions, eIF4E has well-defined roles in the nucleus. It facilitates the export of specific mRNAs containing a 50-nucleotide eIF4E sensitivity element (4ESE) in their 3′ UTRs. This export mechanism depends on eIF4E's cap-binding ability, the CRM1/XPO1 export pathway, and the adaptor protein LRPPRC, which bridges eIF4E and 4ESE-containing transcripts. [25] [26]

RNA processing

Nuclear eIF4E also influences RNA processing events, including alternative splicing, 3′-end cleavage, and m7G capping. Elevated nuclear eIF4E activity has been linked to oncogenic reprogramming in several cancers, particularly acute myeloid leukemia (AML) [27] [28] [29] Through its combined roles in RNA export and translation, eIF4E acts as a global regulator of gene expression, sometimes referred to as a “cap-chaperone” protein.

Regulation

Translational repression

The translation initiation factor eIF4E is tightly regulated by the fragile X mental retardation protein (FMRP), which controls the translation of specific mRNAs at synapses. FMRP interacts with CYFIP1, which directly binds eIF4E at a domain structurally analogous to those found in canonical 4E-binding proteins such as EIF4EBP1, EIF4EBP2, and EIF4EBP3. This interaction competitively inhibits eIF4G binding, thereby blocking assembly of the eukaryotic translation initiation complex and repressing translation. [30] The FMRP–CYFIP1–eIF4E complex is further stabilized by dendritically localized, non-coding RNAs such as BC1, which enhance FMRP-CYFIP1 interactions and mediate recruitment to specific target mRNAs. [30]

This repressive complex is responsive to neuronal stimulation. Synaptic activity promotes the dissociation of CYFIP1 from eIF4E, thereby allowing eIF4G to bind and initiate translation. This mechanism enables dynamic, activity-dependent regulation of protein synthesis at the synapse, contributing to processes such as synaptic plasticity and learning. [30]

Since eIF4E is an initiation factor that is relatively low in abundance, eIF4E can be controlled at multiple levels. [31] [32] Regulation of eIF4E may be achieved at the levels of transcription, RNA stability phosphorylation, subcellular localization and partner proteins. [33]

Gene expression and RNA stability

The mechanisms responsible for eIF4E transcriptional regulation are not entirely understood. However, several reports suggest a correlation between myc levels and eIF4E mRNA levels during the cell cycle. [34] The basis of this relationship was further established by the characterization of two myc-binding sites (CACGTG E box repeats) in the promoter region of the eIF4E gene. [35] This sequence motif is shared with other in vivo targets for myc and mutations in the E box repeats of eIF4E inactivated the promoter region, thereby diminishing its expression.

Recent studies shown that eIF4E levels can be regulated at transcriptional level by NFkB and C/EBP. [36] [37] Transduction of primary AML cells with IkB-SR resulted not only in reduction of eIF4E mRNA levels, but also re-localization of eIF4E protein. [18] eIF4E mRNA stability are also regulated by HuR and TIAR proteins. [38] [39] eIF4E gene amplification has been observed in subset of head and neck and breast cancer specimens. [40]

Phosphorylation

Stimuli such as hormones, growth factors, and mitogens that promote cell proliferation also enhance translation rates by phosphorylating eIF4E. [41] Although eIF4E phosphorylation and translation rates are not always correlated, consistent patterns of eIF4E phosphorylation are observed throughout the cell cycle; wherein low phosphorylation is seen during G0 and M phase and wherein high phosphorylation is seen during G1 and S phase. [42] This evidence is further supported by the crystal structure of eIF4E which suggests that phosphorylation on serine residue 209 may increase the affinity of eIF4E for capped mRNA.

eIF4E phosphorylation is also related to its ability to suppress RNA export and its oncogenic potential as first shown in cell lines. [43]

Partner proteins

Assembly of the eIF4F complex is inhibited by proteins known as eIF4E-binding proteins (4E-BPs), which are small heat-stable proteins that block cap-dependent translation. [33] Non-phosphorylated 4E-BPs interact strongly with eIF4E thereby preventing translation; whereas phosphorylated 4E-BPs bind weakly to eIF4E and thus do not interfere with the process of translation. [44] Furthermore, binding of the 4E-BPs inhibits phosphorylation of Ser209 on eIF4E. [45] Of note, 4E-BP1 is found in both the nucleus and the cytoplasm, indicating that it likely modulates nuclear eIF4Es functions of eIF4E as well. [46] A recent study showed that 4E-BP3 regulated eIF4E dependent mRNA nucleo-cytoplasmic export. [47] There are also many cytoplasmic regulators of eIF4E that bind to the same site as 4E-BP1.

Many other partner proteins has been found that can both stimulate or repress eIF4E activity, such as  homeodomain containing proteins, including HoxA9, Hex/PRH, Hox 11, Bicoid, Emx-2 and Engrailed 2. [48] [18] [49] [50] [51] While HoxA9 promotes mRNA export and translation activities of eIF4E, Hex/PRH inhibits nuclear functions of eIF4E. [18] [52] [53] The RNA helicase DDX3 directly binds with eIF4E, modulates translation, and has potential functions in P-bodies and mRNA export. [54] [25]

RING domains also bind eIF4E. The promyelocytic leukemia protein PML is a potent suppressor of both the nuclear RNA export and oncogenic activities of eIF4E whereby the RING domain of PML directly binds eIF4E on its dorsal surface suppressing eIF4E's oncogenic activity; and moreover a subset of PML and eIF4E nuclear bodies co-localize. [55] [17] [56] [16] [18] [57] RNA-eIF4E complexes are never observed in PML bodies consistent with the observation that PML suppresses the m7G cap binding function of eIF4E. [17] [56] [57] Structural studies show that a related arenavirus RING finger protein, Lassa Fever Z protein, can similarly bind eIF4E on the dorsal surface. [56] [58] [59]

eIF4E nuclear entry is mediated by its direct interactions with Importin 8 where Importin 8 associates with the m7G cap-binding site of eIF4E. [60] Indeed, reduction in Importin 8 levels reduce the oncogenic potential of eIF4E overexpressing cells and its RNA export function. Importin 8 binds to the cap-binding site of eIF4E and is competed by excess m7G cap analogues as observed by NMR. eIF4E also stimulates the RNA export of Importin 8 RNA thereby producing more Importin 8 protein. There may be additional importins that play this role depending on cell type. Although an initial study suggested that the eIF4E transporter protein 4E-T (eIF4ENIF1) facilitated nuclear entry, later studies showed that this factor rather alters the localization of eIF4E to cytoplasmic processing bodies (P-bodies) and repress translation. [61]

Potyvirus viral protein genome linked (VPg) were found to directly bind eIF4E in its cap-binding site. VPg is covalently linked to its genomic RNA and this interaction allows VPg to act as a "cap." [62] [63] [24] [64] The potyvirus VPg has no sequence or structural homology to other VPg's such as those from poliovirus. In vitro, VPg-RNA conjugates were translated with similar efficiency to m7G-capped RNAs indicating that VPg binds eIF4E and engages the translation machinery; while free VPg (in the absence of conjugated RNA) successfully competes for all the cap-dependent activities of eIF4E in the cell inhibiting translation and  RNA export. [64]

Cellular localization

Several factors that regulate eIF4E functions also modulate the subcellular localization of eIF4E. For instance, overexpression of PRH/Hex leads to cytoplasmic retention of eIF4E, and thus loss of its mRNA export activity and suppression of transformation. [18] PML overexpression leads to sequestration of eIF4E to nuclear bodies with PML and decrease of eIF4E nuclear bodies containing RNA, which correlates to repressed eIF4E dependent mRNA export and can be modulated by stress. [17] [16] [18] Overexpression of LRPPRC reduces eIF4E’s co-localization with PML in the nucleus and leads to increased mRNA export activity of eIF4E. As discussed above, Importin 8 brings eIF4E into the nucleus and its overexpression stimulates the RNA export and oncogenic transformation activities of eIF4E in cell lines. Transduction of primary AML cells with IkB-SR resulted not only in reduction of eIF4E mRNA levels, but also re-localization of eIF4E protein. [18]

Role in cancer

Lazaris-Karatzas et al. [65] found that that over-expressing eIF4E causes tumorigenic transformation of fibroblasts. Since this initial observation, numerous groups have recapitulated these results in different cell lines. [66] As a result, eIF4E activity is implicated in several cancers including cancers of the breast, lung, and prostate. In fact, transcriptional profiling of metastatic human tumors has revealed a distinct metabolic signature wherein eIF4E is known to be consistently up-regulated. [67]

eIF4E levels are increased in many cancers including acute myeloid leukemia (AML), multiple myeloma, infant ALL, diffuse large B-cell lymphoma, breast cancer, prostate cancer, head and neck cancer and  its elevation generally correlates with poor prognosis. [29] [68] [69] [70] [71] [72] [73] [74] In many of these cancers such as AML, eIF4E is enriched in nuclei and several of eIF4E’s activities are found to be elevated in primary patient specimens, including capping, splicing, RNA export, and translation.

In the first clinical trials targeting eIF4E, old antiviral drug ribavirin was used as a m7G cap competitor which had substantial activity in cancer cell lines and animal models associated with dysregulated eIF4E. [75] [76] [69] [77] [78] [79] [80] [72] [81] [82] [83] [84] [85] [74] . To date PubMed searches reveal that over 30 groups have found that ribavirin targets eIF4E activity while two did not. In the first trial to ever target eIF4E, ribavirin monotherapy was demonstrated to inhibit eIF4E activity leading to objective clinical responses including complete remissions in AML patients. [29] Interestingly, relocalization of eIF4E from the nucleus to the cytoplasm correlated with clinical remissions indicative of the relevance of its nuclear activities to disease progression. [29] Subsequent ribavirin trials in AML in combination with antileukemic drugs again showed objective clinical responses including remissions and molecular targeting of eIF4E. [70] [86]  Clinical responses correlated with reduced nuclear eIF4E and clinical relapse with re-emergence of eIF4E nuclear eIF4E and its RNA export activity in these AML studies. Other studies used ribavirin in combination showed similar promising results in  head and neck cancer. [73] Ribavirin impairs all of the activities of eIF4E examined to date (splicing, capping, RNA export and translation).  Thus, eIF4E has been successfully therapeutically targetable in humans; however drug resistance to ribavirin is an emergent problem to long term disease control. [79] [70] [86]

eIF4E has also been targeted by antisense oligonucleotides which were very potent in mouse models of prostate cancer, [87] but in monotherapy trials in humans did not provide clinical benefit likely due to the inefficiency of reducing eIF4E levels in humans compared to mice. [88] Recent improvements in nanoparticle delivery may improve this strategy. There is also an allosteric inhibitor of eIF4E which binds between the cap-binding site and the dorsal surface that is used experimentally. [89]


Interactions

EIF4E has been shown to interact with:

. Other direct interactors: PML; [17] [56] arenavirus Z protein; [56] [55] [58] [59] Importin 8; [60] potyvirus VPg protein, [64] LRPPRC, [26] [25] RNMT [110] and others.

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000151247 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028156 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Pelletier J, Brook JD, Housman DE (August 1991). "Assignment of two of the translation initiation factor-4E (EIF4EL1 and EIF4EL2) genes to human chromosomes 4 and 20". Genomics. 10 (4): 1079–1082. doi:10.1016/0888-7543(91)90203-Q. PMID   1916814.
  6. Jones RM, MacDonald ME, Branda J, Altherr MR, Louis DN, Schmidt EV (May 1997). "Assignment of the human gene encoding eukaryotic initiation factor 4E (EIF4E) to the region q21-25 on chromosome 4". Somatic Cell and Molecular Genetics. 23 (3): 221–223. doi:10.1007/BF02721373. PMID   9330633. S2CID   10683455.
  7. Filipowicz W, Furuichi Y, Sierra JM, Muthukrishnan S, Shatkin AJ, Ochoa S (May 1976). "A protein binding the methylated 5'-terminal sequence, m7GpppN, of eukaryotic messenger RNA". Proceedings of the National Academy of Sciences of the United States of America. 73 (5): 1559–1563. doi: 10.1073/pnas.73.5.1559 . PMC   430337 . PMID   1064023.
  8. Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ (October 1978). "A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA". Proceedings of the National Academy of Sciences of the United States of America. 75 (10): 4843–4847. Bibcode:1978PNAS...75.4843S. doi: 10.1073/pnas.75.10.4843 . PMC   336217 . PMID   217002.
  9. 1 2 Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ (September 1979). "Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP". Proceedings of the National Academy of Sciences of the United States of America. 76 (9): 4345–4349. Bibcode:1979PNAS...76.4345S. doi: 10.1073/pnas.76.9.4345 . PMC   411571 . PMID   291969.
  10. Hutchins AP, Roberts GR, Lloyd CW, Doonan JH (Jan 2004). "In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation". FEBS Letters. 556 (1–3): 91–94. Bibcode:2004FEBSL.556...91H. doi: 10.1016/S0014-5793(03)01382-6 . PMID   14706832. S2CID   35343626.
  11. Hsieh AC, Ruggero D (11 August 2010). "Targeting Eukaryotic Translation Initiation Factor 4E (eIF4E) in Cancer". Clinical Cancer Research. 16 (20): 4914–4920. doi: 10.1158/1078-0432.CCR-10-0433 . PMC   7539621 . PMID   20702611.
  12. Rychlik W, Domier LL, Gardner PR, Hellmann GM, Rhoads RE (February 1987). "Amino acid sequence of the mRNA cap-binding protein from human tissues". Proceedings of the National Academy of Sciences of the United States of America. 84 (4): 945–949. Bibcode:1987PNAS...84..945R. doi: 10.1073/pnas.84.4.945 . PMC   304336 . PMID   3469651.
  13. "Entrez Gene: eIF4E Eukaryotic translation initiation factor 4E".
  14. Lejbkowicz F, Goyer C, Darveau A, Neron S, Lemieux R, Sonenberg N (1992-10-15). "A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 89 (20): 9612–9616. Bibcode:1992PNAS...89.9612L. doi: 10.1073/pnas.89.20.9612 . ISSN   0027-8424. PMC   50182 . PMID   1384058.
  15. Dostie J, Lejbkowicz F, Sonenberg N (2000-01-24). "Nuclear Eukaryotic Initiation Factor 4e (Eif4e) Colocalizes with Splicing Factors in Speckles". The Journal of Cell Biology. 148 (2): 239–247. doi:10.1083/jcb.148.2.239. ISSN   0021-9525. PMC   2174286 . PMID   10648556.
  16. 1 2 3 Topisirovic I, Capili AD, Borden KL (2002-09-01). "Gamma Interferon and Cadmium Treatments Modulate Eukaryotic Initiation Factor 4E-Dependent mRNA Transport of Cyclin D1 in a PML-Dependent Manner". Molecular and Cellular Biology. 22 (17): 6183–6198. doi:10.1128/MCB.22.17.6183-6198.2002. ISSN   1098-5549. PMC   134012 . PMID   12167712.
  17. 1 2 3 4 5 Cohen N (2001-08-15). "PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA". The EMBO Journal. 20 (16): 4547–4559. doi:10.1093/emboj/20.16.4547. PMC   125576 . PMID   11500381.
  18. 1 2 3 4 5 6 7 8 Topisirovic I (2003-02-03). "The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth". The EMBO Journal. 22 (3): 689–703. doi:10.1093/emboj/cdg069. PMC   140753 . PMID   12554669.
  19. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2005-04-25). "eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR". The Journal of Cell Biology. 169 (2): 245–256. doi:10.1083/jcb.200501019. ISSN   1540-8140. PMC   2171863 . PMID   15837800.
  20. de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ (2018-08-03). "A widespread alternate form of cap-dependent mRNA translation initiation". Nature Communications. 9 (1): 3068. Bibcode:2018NatCo...9.3068D. doi:10.1038/s41467-018-05539-0. ISSN   2041-1723. PMC   6076257 . PMID   30076308.
  21. Lee AS, Kranzusch PJ, Doudna JA, Cate JH (2016-08-04). "eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation". Nature. 536 (7614): 96–99. Bibcode:2016Natur.536...96L. doi:10.1038/nature18954. ISSN   0028-0836. PMC   5003174 . PMID   27462815.
  22. Bukhari SI, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, et al. (March 2016). "A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence". Molecular Cell. 61 (5): 760–773. doi:10.1016/j.molcel.2016.02.013. PMC   4811377 . PMID   26942679.
  23. Kumar P, Hellen CU, Pestova TV (2016-07-01). "Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs". Genes & Development. 30 (13): 1573–1588. doi:10.1101/gad.282418.116. ISSN   0890-9369. PMC   4949329 . PMID   27401559.
  24. 1 2 Borden KL, Volpon L (2020-09-01). "The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery". RNA Biology. 17 (9): 1239–1251. doi:10.1080/15476286.2020.1766179. ISSN   1547-6286. PMC   7549709 . PMID   32496897.
  25. 1 2 3 Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, et al. (2009-04-22). "Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP". The EMBO Journal. 28 (8): 1087–1098. doi:10.1038/emboj.2009.53. ISSN   0261-4189. PMC   2683702 . PMID   19262567.
  26. 1 2 Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden KL (June 2017). "A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery". RNA. 23 (6). New York, N.Y.: 927–937. doi:10.1261/rna.060137.116. ISSN   1355-8382. PMC   5435865 . PMID   28325843.
  27. Culjkovic-Kraljacic B, Skrabanek L, Revuelta MV, Gasiorek J, Cowling VH, Cerchietti L, et al. (2020-10-27). "The eukaryotic translation initiation factor eIF4E elevates steady-state m 7 G capping of coding and noncoding transcripts". Proceedings of the National Academy of Sciences of the United States of America. 117 (43): 26773–26783. Bibcode:2020PNAS..11726773C. doi: 10.1073/pnas.2002360117 . ISSN   0027-8424. PMC   7604501 . PMID   33055213.
  28. Ghram M, Morris G, Culjkovic-Kraljacic B, Mars JC, Gendron P, Skrabanek L, et al. (2023-04-03). "The eukaryotic translation initiation factor eIF4E reprograms alternative splicing". The EMBO Journal. 42 (7): e110496. doi:10.15252/embj.2021110496. ISSN   0261-4189. PMC   10068332 . PMID   36843541.
  29. 1 2 3 4 Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. (2009-07-09). "Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin". Blood. 114 (2): 257–260. doi: 10.1182/blood-2009-02-205153 . ISSN   0006-4971. PMID   19433856. S2CID   28957125.
  30. 1 2 3 Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, et al. (September 2008). "The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP". Cell. 134 (6): 1042–1054. doi: 10.1016/j.cell.2008.07.031 . PMID   18805096. S2CID   14123165.
  31. Duncan R, Milburn SC, Hershey JW (1987-01-05). "Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F". The Journal of Biological Chemistry. 262 (1): 380–388. doi: 10.1016/S0021-9258(19)75938-9 . ISSN   0021-9258. PMID   3793730.
  32. Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KL (2021-12-08). "The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation". Cancers. 13 (24): 6185. doi: 10.3390/cancers13246185 . ISSN   2072-6694. PMC   8699206 . PMID   34944805.
  33. 1 2 Richter JD, Sonenberg N (2005-02-03). "Regulation of cap-dependent translation by eIF4E inhibitory proteins". Nature. 433 (7025): 477–480. Bibcode:2005Natur.433..477R. doi:10.1038/nature03205. ISSN   1476-4687. PMID   15690031. S2CID   4347657.
  34. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV (1993-07-01). "Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc". Proceedings of the National Academy of Sciences of the United States of America. 90 (13): 6175–6178. Bibcode:1993PNAS...90.6175R. doi: 10.1073/pnas.90.13.6175 . ISSN   0027-8424. PMC   46890 . PMID   8327497.
  35. Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, et al. (September 1996). "An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc". Molecular and Cellular Biology. 16 (9): 4754–4764. doi:10.1128/mcb.16.9.4754. ISSN   0270-7306. PMC   231476 . PMID   8756633.
  36. Khanna-Gupta A, Abayasekara N, Levine M, Sun H, Virgilio M, Nia N, et al. (September 2012). "Up-regulation of Translation Eukaryotic Initiation Factor 4E in Nucleophosmin 1 Haploinsufficient Cells Results in Changes in CCAAT Enhancer-binding Protein α Activity". The Journal of Biological Chemistry. 287 (39): 32728–32737. doi: 10.1074/jbc.M112.373274 . PMC   3463350 . PMID   22851180.
  37. Hariri F, Arguello M, Volpon L, Culjkovic-Kraljacic B, Nielsen TH, Hiscott J, et al. (October 2013). "The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia". Leukemia. 27 (10): 2047–2055. doi:10.1038/leu.2013.73. ISSN   0887-6924. PMC   4429918 . PMID   23467026.
  38. Mazan-Mamczarz K, Lal A, Martindale JL, Kawai T, Gorospe M (2006-04-01). "Translational Repression by RNA-Binding Protein TIAR". Molecular and Cellular Biology. 26 (7): 2716–2727. doi:10.1128/MCB.26.7.2716-2727.2006. ISSN   1098-5549. PMC   1430315 . PMID   16537914.
  39. Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, et al. (2009-03-01). "Stability of Eukaryotic Translation Initiation Factor 4E mRNA Is Regulated by HuR, and This Activity Is Dysregulated in Cancer". Molecular and Cellular Biology. 29 (5): 1152–1162. doi:10.1128/MCB.01532-08. ISSN   1098-5549. PMC   2643828 . PMID   19114552.
  40. Sorrells DL, Black DR, Meschonat C, Rhoads R, De Benedetti A, Gao M, et al. (April 1998). "Detection of eIF4E gene amplification in breast cancer by competitive PCR" . Annals of Surgical Oncology. 5 (3): 232–237. doi:10.1007/BF02303778. ISSN   1068-9265. PMID   9607624. S2CID   776478.
  41. Morley SJ, Traugh JA (1990-06-25). "Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters". The Journal of Biological Chemistry. 265 (18): 10611–10616. doi: 10.1016/S0021-9258(18)86990-3 . ISSN   0021-9258. PMID   2191953.
  42. Bonneau AM, Sonenberg N (1987-08-15). "Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis". The Journal of Biological Chemistry. 262 (23): 11134–11139. doi: 10.1016/S0021-9258(18)60935-4 . ISSN   0021-9258. PMID   3038908.
  43. Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004-12-01). "Phosphorylation of the Eukaryotic Translation Initiation Factor eIF4E Contributes to Its Transformation and mRNA Transport Activities". Cancer Research. 64 (23): 8639–8642. doi: 10.1158/0008-5472.CAN-04-2677 . ISSN   0008-5472. PMID   15574771. S2CID   21104713.
  44. Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, et al. (2015-03-19). "Molecular architecture of 4E-BP translational inhibitors bound to eIF4E". Molecular Cell. 57 (6): 1074–1087. doi: 10.1016/j.molcel.2015.01.017 . ISSN   1097-4164. PMID   25702871.
  45. Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, et al. (1996-05-17). "Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins". The Journal of Biological Chemistry. 271 (20): 11831–11837. doi: 10.1074/jbc.271.20.11831 . ISSN   0021-9258. PMID   8662663.
  46. Rong L, Livingstone M, Sukarieh R, Petroulakis E, Gingras AC, Crosby K, et al. (July 2008). "Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs". RNA. 14 (7). New York, N.Y.: 1318–1327. doi:10.1261/rna.950608. ISSN   1355-8382. PMC   2441981 . PMID   18515545.
  47. Chen CC, Lee JC, Chang MC (2012-07-30). "4E-BP3 regulates eIF4E-mediated nuclear mRNA export and interacts with replication protein A2". FEBS Letters. 586 (16): 2260–2266. Bibcode:2012FEBSL.586.2260C. doi: 10.1016/j.febslet.2012.05.059 . PMID   22684010. S2CID   40980342.
  48. Niessing D, Blanke S, Jäckle H (2002-10-01). "Bicoid associates with the 5′-cap-bound complex of caudal mRNA and represses translation". Genes & Development. 16 (19): 2576–2582. doi:10.1101/gad.240002. ISSN   0890-9369. PMC   187448 . PMID   12368268.
  49. Nédélec S, Foucher I, Brunet I, Bouillot C, Prochiantz A, Trembleau A (2004-07-20). "Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons". Proceedings of the National Academy of Sciences of the United States of America. 101 (29): 10815–10820. Bibcode:2004PNAS..10110815N. doi: 10.1073/pnas.0403824101 . ISSN   0027-8424. PMC   490017 . PMID   15247416.
  50. Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, et al. (November 2005). "The transcription factor Engrailed-2 guides retinal axons". Nature. 438 (7064): 94–98. Bibcode:2005Natur.438...94B. doi:10.1038/nature04110. ISSN   0028-0836. PMC   3785142 . PMID   16267555.
  51. Topisirovic I, Borden KL (October 2005). "Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship". Histology and Histopathology. 20 (4): 1275–1284. doi:10.14670/hh-20.1275. ISSN   0213-3911. PMID   16136508.
  52. Kuroda N, Guo L, Miyazaki E, Hamauzu T, Toi M, Hiroi M, et al. (2005-01-01). "The appearance of myofibroblasts and the disappearance of CD34-positive stromal cells in the area adjacent to xanthogranulomatous foci of chronic cholecystitis". Histology and Histopathology. 20 (1): 127–133. doi:10.14670/hh-20.127. ISSN   0213-3911. PMID   15578431.
  53. Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KL (2005-02-01). "Eukaryotic Translation Initiation Factor 4E Activity Is Modulated by HOXA9 at Multiple Levels". Molecular and Cellular Biology. 25 (3): 1100–1112. doi:10.1128/MCB.25.3.1100-1112.2005. ISSN   1098-5549. PMC   544005 . PMID   15657436.
  54. Shih JW, Tsai TY, Chao CH, Wu Lee YH (2008-01-24). "Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein". Oncogene. 27 (5): 700–714. doi: 10.1038/sj.onc.1210687 . ISSN   0950-9232. PMID   17667941. S2CID   19781838.
  55. 1 2 Kentsis A, Gordon RE, Borden KL (2002-11-26). "Control of biochemical reactions through supramolecular RING domain self-assembly". Proceedings of the National Academy of Sciences of the United States of America. 99 (24): 15404–15409. Bibcode:2002PNAS...9915404K. doi: 10.1073/pnas.202608799 . ISSN   0027-8424. PMC   137729 . PMID   12438698.
  56. 1 2 3 4 5 Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, et al. (September 2001). "The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E 1 1Edited by D. Draper" . Journal of Molecular Biology. 312 (4): 609–623. doi:10.1006/jmbi.2001.5003. PMID   11575918.
  57. 1 2 Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2006-11-06). "eIF4E is a central node of an RNA regulon that governs cellular proliferation". The Journal of Cell Biology. 175 (3): 415–426. doi:10.1083/jcb.200607020. ISSN   1540-8140. PMC   2064519 . PMID   17074885.
  58. 1 2 Kentsis A, Gordon RE, Borden KL (2002-01-22). "Self-assembly properties of a model RING domain". Proceedings of the National Academy of Sciences of the United States of America. 99 (2): 667–672. doi: 10.1073/pnas.012317299 . ISSN   0027-8424. PMC   117363 . PMID   11792829.
  59. 1 2 Volpon L, Osborne MJ, Capul AA, de la Torre JC, Borden KL (2010-03-23). "Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E". Proceedings of the National Academy of Sciences of the United States of America. 107 (12): 5441–5446. Bibcode:2010PNAS..107.5441V. doi: 10.1073/pnas.0909877107 . ISSN   0027-8424. PMC   2851782 . PMID   20212144.
  60. 1 2 Volpon L, Culjkovic-Kraljacic B, Osborne MJ, Ramteke A, Sun Q, Niesman A, et al. (2016-05-10). "Importin 8 mediates m 7 G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E". Proceedings of the National Academy of Sciences of the United States of America. 113 (19): 5263–5268. Bibcode:2016PNAS..113.5263V. doi: 10.1073/pnas.1524291113 . ISSN   0027-8424. PMC   4868427 . PMID   27114554.
  61. Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N (2005-09-12). "A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay". The Journal of Cell Biology. 170 (6): 913–924. doi:10.1083/jcb.200504039. ISSN   1540-8140. PMC   2171455 . PMID   16157702.
  62. German-Retana S, Walter J, Le Gall O (March 2008). "Lettuce mosaic virus: from pathogen diversity to host interactors". Molecular Plant Pathology. 9 (2): 127–136. Bibcode:2008MolPP...9..127G. doi:10.1111/j.1364-3703.2007.00451.x. ISSN   1464-6722. PMC   6640324 . PMID   18705846.
  63. Coutinho de Oliveira L, Volpon L, Osborne MJ, Borden KL (April 2019). "Chemical shift assignment of the viral protein genome-linked (VPg) from potato virus Y". Biomolecular NMR Assignments. 13 (1): 9–13. doi:10.1007/s12104-018-9842-3. ISSN   1874-2718. PMC   6428624 . PMID   30242622.
  64. 1 2 3 Coutinho de Oliveira L, Volpon L, Rahardjo AK, Osborne MJ, Culjkovic-Kraljacic B, Trahan C, et al. (2019-11-26). "Structural studies of the eIF4E–VPg complex reveal a direct competition for capped RNA: Implications for translation". Proceedings of the National Academy of Sciences of the United States of America. 116 (48): 24056–24065. Bibcode:2019PNAS..11624056C. doi: 10.1073/pnas.1904752116 . ISSN   0027-8424. PMC   6883836 . PMID   31712417.
  65. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990-06-07). "Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap". Nature. 345 (6275): 544–547. Bibcode:1990Natur.345..544L. doi:10.1038/345544a0. ISSN   0028-0836. PMID   2348862. S2CID   4366949.
  66. Pelletier J, Graff J, Ruggero D, Sonenberg N (2015-01-15). "TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT". Cancer Research. 75 (2): 250–263. doi:10.1158/0008-5472.CAN-14-2789. ISSN   0008-5472. PMC   4299928 . PMID   25593033.
  67. Ramaswamy S, Ross KN, Lander ES, Golub TR (January 2003). "A molecular signature of metastasis in primary solid tumors". Nature Genetics. 33 (1): 49–54. doi:10.1038/ng1060. ISSN   1546-1718. PMID   12469122. S2CID   12059602.
  68. Culjkovic B, Borden KL (2009). "Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer". Journal of Oncology. 2009: 981679. doi: 10.1155/2009/981679 . ISSN   1687-8450. PMC   2798714 . PMID   20049173.
  69. 1 2 Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvay H, Puckett R, et al. (2011-05-01). "Ribavirin Treatment Effects on Breast Cancers Overexpressing eIF4E, a Biomarker with Prognostic Specificity for Luminal B-Type Breast Cancer". Clinical Cancer Research. 17 (9): 2874–2884. doi:10.1158/1078-0432.CCR-10-2334. ISSN   1078-0432. PMC   3086959 . PMID   21415224.
  70. 1 2 3 Assouline S, Culjkovic-Kraljacic B, Bergeron J, Caplan S, Cocolakis E, Lambert C, et al. (2015-01-01). "A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E". Haematologica. 100 (1): e7 –e9. doi:10.3324/haematol.2014.111245. ISSN   0390-6078. PMC   4281321 . PMID   25425688.
  71. Attar-Schneider O, Pasmanik-Chor M, Tartakover-Matalon S, Drucker L, Lishner M (2015-02-28). "eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma's proteome and signaling". Oncotarget. 6 (6): 4315–4329. doi:10.18632/oncotarget.3008. ISSN   1949-2553. PMC   4414192 . PMID   25717031.
  72. 1 2 Zismanov V, Attar-Schneider O, Lishner M, Aizenfeld RH, Matalon ST, Drucker L (February 2015). "Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E". International Journal of Oncology. 46 (2): 860–870. doi: 10.3892/ijo.2014.2774 . ISSN   1019-6439. PMID   25422161.
  73. 1 2 Dunn LA, Fury MG, Sherman EJ, Ho AA, Katabi N, Haque SS, et al. (February 2018). "Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer". Head & Neck. 40 (2): 233–241. doi:10.1002/hed.24938. PMC   6760238 . PMID   28963790.
  74. 1 2 Urtishak KA, Wang LS, Culjkovic-Kraljacic B, Davenport JW, Porazzi P, Vincent TL, et al. (2019-03-28). "Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia". Oncogene. 38 (13): 2241–2262. doi:10.1038/s41388-018-0567-7. ISSN   0950-9232. PMC   6440839 . PMID   30478448.
  75. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL (2004-12-28). "Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap". Proceedings of the National Academy of Sciences of the United States of America. 101 (52): 18105–18110. Bibcode:2004PNAS..10118105K. doi: 10.1073/pnas.0406927102 . ISSN   0027-8424. PMC   539790 . PMID   15601771.
  76. Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, et al. (December 2005). "Further evidence that ribavirin interacts with eIF4E". RNA. 11 (12). New York, N.Y.: 1762–1766. doi:10.1261/rna.2238705. ISSN   1355-8382. PMC   1370864 . PMID   16251386.
  77. Bollmann F, Fechir K, Nowag S, Koch K, Art J, Kleinert H, et al. (April 2013). "Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport" . Nitric Oxide. 30: 49–59. doi:10.1016/j.niox.2013.02.083. PMID   23471078.
  78. Volpon L, Osborne MJ, Zahreddine H, Romeo AA, Borden KL (May 2013). "Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate". Biochemical and Biophysical Research Communications. 434 (3): 614–619. doi:10.1016/j.bbrc.2013.03.125. PMC   3659399 . PMID   23583375.
  79. 1 2 Zahreddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, et al. (2014-07-03). "The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation". Nature. 511 (7507): 90–93. Bibcode:2014Natur.511...90Z. doi:10.1038/nature13283. ISSN   0028-0836. PMC   4138053 . PMID   24870236.
  80. Shi F, Len Y, Gong Y, Shi R, Yang X, Naren D, et al. (2015-08-28). Eaves CJ (ed.). "Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia". PLOS ONE. 10 (8): e0136746. Bibcode:2015PLoSO..1036746S. doi: 10.1371/journal.pone.0136746 . ISSN   1932-6203. PMC   4552648 . PMID   26317515.
  81. Dai D, Chen H, Tang J, Tang Y (January 2017). "Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma" . Biochemical and Biophysical Research Communications. 482 (4): 1259–1264. doi:10.1016/j.bbrc.2016.12.025. PMID   27932243.
  82. Volpin F, Casaos J, Sesen J, Mangraviti A, Choi J, Gorelick N, et al. (2017-05-25). "Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic" . Oncogene. 36 (21): 3037–3047. doi:10.1038/onc.2016.457. ISSN   0950-9232. PMID   27941882. S2CID   21655102.
  83. Wang G, Li Z, Li Z, Huang Y, Mao X, Xu C, et al. (December 2017). "Targeting eIF4E inhibits growth, survival and angiogenesis in retinoblastoma and enhances efficacy of chemotherapy" . Biomedicine & Pharmacotherapy. 96: 750–756. doi:10.1016/j.biopha.2017.10.034. PMID   29049978.
  84. Xi C, Wang L, Yu J, Ye H, Cao L, Gong Z (September 2018). "Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer" . Biochemical and Biophysical Research Communications. 503 (4): 2286–2292. doi:10.1016/j.bbrc.2018.06.150. PMID   29959920. S2CID   49634908.
  85. Jin J, Xiang W, Wu S, Wang M, Xiao M, Deng A (March 2019). "Targeting eIF4E signaling with ribavirin as a sensitizing strategy for ovarian cancer" . Biochemical and Biophysical Research Communications. 510 (4): 580–586. doi:10.1016/j.bbrc.2019.01.117. PMID   30739792. S2CID   73419809.
  86. 1 2 Assouline S, Gasiorek J, Bergeron J, Lambert C, Culjkovic-Kraljacic B, Cocolakis E, et al. (2023-03-23). "Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine". Haematologica. 108 (11): 2946–2958. doi: 10.3324/haematol.2023.282791 . ISSN   1592-8721. PMC   10620574 . PMID   36951168. S2CID   257733013.
  87. Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, et al. (2007-09-04). "Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity". The Journal of Clinical Investigation. 117 (9): 2638–2648. doi:10.1172/JCI32044. ISSN   0021-9738. PMC   1957541 . PMID   17786246.
  88. Hong DS, Kurzrock R, Oh Y, Wheler J, Naing A, Brail L, et al. (2011-10-15). "A Phase 1 Dose Escalation, Pharmacokinetic, and Pharmacodynamic Evaluation of eIF-4E Antisense Oligonucleotide LY2275796 in Patients with Advanced Cancer". Clinical Cancer Research. 17 (20): 6582–6591. doi:10.1158/1078-0432.CCR-11-0430. ISSN   1078-0432. PMC   5036398 . PMID   21831956.
  89. Papadopoulos E, Jenni S, Kabha E, Takrouri KJ, Yi T, Salvi N, et al. (2014-08-05). "Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G". Proceedings of the National Academy of Sciences of the United States of America. 111 (31): E3187 –E3195. Bibcode:2014PNAS..111E3187P. doi: 10.1073/pnas.1410250111 . ISSN   0027-8424. PMC   4128100 . PMID   25049413.
  90. 1 2 Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3: 89. doi:10.1038/msb4100134. PMC   1847948 . PMID   17353931.
  91. 1 2 3 Connolly E, Braunstein S, Formenti S, Schneider RJ (May 2006). "Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells". Molecular and Cellular Biology. 26 (10): 3955–3965. doi:10.1128/MCB.26.10.3955-3965.2006. PMC   1489005 . PMID   16648488.
  92. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–1178. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  93. 1 2 3 Mader S, Lee H, Pause A, Sonenberg N (September 1995). "The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins". Molecular and Cellular Biology. 15 (9): 4990–4997. doi:10.1128/MCB.15.9.4990. PMC   230746 . PMID   7651417.
  94. Rao RD, Mladek AC, Lamont JD, Goble JM, Erlichman C, James CD, et al. (October 2005). "Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells". Neoplasia. 7 (10). New York, N.Y.: 921–929. doi:10.1593/neo.05361. PMC   1502028 . PMID   16242075.
  95. Eguchi S, Tokunaga C, Hidayat S, Oshiro N, Yoshino K, Kikkawa U, et al. (July 2006). "Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size". Genes to Cells. 11 (7): 757–766. doi:10.1111/j.1365-2443.2006.00977.x. PMID   16824195. S2CID   30113895.
  96. Yang D, Brunn GJ, Lawrence JC (June 1999). "Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR". FEBS Letters. 453 (3): 387–390. Bibcode:1999FEBSL.453..387Y. doi: 10.1016/s0014-5793(99)00762-0 . PMID   10405182. S2CID   5023204.
  97. Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG (June 2002). "Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors". European Journal of Biochemistry. 269 (12): 3076–3085. doi: 10.1046/j.1432-1033.2002.02992.x . PMID   12071973.
  98. 1 2 Kumar V, Sabatini D, Pandey P, Gingras AC, Majumder PK, Kumar M, et al. (April 2000). "Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase". Journal of Biological Chemistry. 275 (15): 10779–10787. doi: 10.1074/jbc.275.15.10779 . PMID   10753870.
  99. Kumar V, Pandey P, Sabatini D, Kumar M, Majumder PK, Bharti A, et al. (March 2000). "Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation". The EMBO Journal. 19 (5): 1087–1097. doi:10.1093/emboj/19.5.1087. PMC   305647 . PMID   10698949.
  100. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. (June 1999). "Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism". Genes & Development. 13 (11): 1422–1437. doi:10.1101/gad.13.11.1422. PMC   316780 . PMID   10364159.
  101. Shen X, Tomoo K, Uchiyama S, Kobayashi Y, Ishida T (October 2001). "Structural and thermodynamic behavior of eukaryotic initiation factor 4E in supramolecular formation with 4E-binding protein 1 and mRNA cap analogue, studied by spectroscopic methods". Chemical & Pharmaceutical Bulletin. 49 (10): 1299–1303. doi: 10.1248/cpb.49.1299 . PMID   11605658.
  102. Adegoke OA, Chevalier S, Morais JA, Gougeon R, Kimball SR, Jefferson LS, et al. (January 2009). "Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E105 –E113. doi:10.1152/ajpendo.90752.2008. PMC   2636991 . PMID   18957614.
  103. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC, et al. (October 1994). "Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function". Nature. 371 (6500): 762–767. Bibcode:1994Natur.371..762P. doi:10.1038/371762a0. PMID   7935836. S2CID   4360955.
  104. Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG (December 2002). "Localisation and regulation of the eIF4E-binding protein 4E-BP3". FEBS Letters. 532 (3): 319–323. Bibcode:2002FEBSL.532..319K. doi:10.1016/s0014-5793(02)03694-3. PMID   12482586. S2CID   24527449.
  105. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N (May 1998). "4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family". Journal of Biological Chemistry. 273 (22): 14002–14007. doi: 10.1074/jbc.273.22.14002 . PMID   9593750.
  106. Dostie J, Ferraiuolo M, Pause A, Adam SA, Sonenberg N (June 2000). "A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E". The EMBO Journal. 19 (12): 3142–3156. doi:10.1093/emboj/19.12.3142. PMC   203362 . PMID   10856257.
  107. Vary TC, Jefferson LS, Kimball SR (December 1999). "Amino acid-induced stimulation of translation initiation in rat skeletal muscle". The American Journal of Physiology. 277 (6): E1077 –E1086. doi:10.1152/ajpendo.1999.277.6.E1077. PMID   10600798. S2CID   4516850.
  108. Harris TE, Chi A, Shabanowitz J, Hunt DF, Rhoads RE, Lawrence JC (April 2006). "mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin". The EMBO Journal. 25 (8): 1659–1668. doi:10.1038/sj.emboj.7601047. PMC   1440840 . PMID   16541103.
  109. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, et al. (January 1998). "A novel functional human eukaryotic translation initiation factor 4G". Molecular and Cellular Biology. 18 (1): 334–342. doi:10.1128/mcb.18.1.334. PMC   121501 . PMID   9418880.
  110. Osborne MJ, Volpon L, Memarpoor-Yazdi M, Pillay S, Thambipillai A, Czarnota S, et al. (March 2022). "Identification and Characterization of the Interaction Between the Methyl-7-Guanosine Cap Maturation Enzyme RNMT and the Cap-Binding Protein eIF4E". Journal of Molecular Biology. 434 (5): 167451. doi:10.1016/j.jmb.2022.167451. PMC   9288840 . PMID   35026230.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.