The Kozak consensus sequence (Kozak consensus or Kozak sequence) is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. [1] Regarded as the optimum sequence for initiating translation in eukaryotes, the sequence is an integral aspect of protein regulation and overall cellular health as well as having implications in human disease. [1] [2] It ensures that a protein is correctly translated from the genetic message, mediating ribosome assembly and translation initiation. A wrong start site can result in non-functional proteins. [3] As it has become more studied, expansions of the nucleotide sequence, bases of importance, and notable exceptions have arisen. [1] [4] [5] The sequence was named after the scientist who discovered it, Marilyn Kozak. Kozak discovered the sequence through a detailed analysis of DNA genomic sequences. [6]
The Kozak sequence is not to be confused with the ribosomal binding site (RBS), that being either the 5′ cap of a messenger RNA or an internal ribosome entry site (IRES).
The Kozak sequence was determined by sequencing of 699 vertebrate mRNAs and verified by site-directed mutagenesis. [7] While initially limited to a subset of vertebrates (i.e. human, cow, cat, dog, chicken, guinea pig, hamster, mouse, pig, rabbit, sheep, and Xenopus ), subsequent studies confirmed its conservation in higher eukaryotes generally. [1] The sequence was defined as 5'-(gcc)gccRccAUGG
-3' (IUPAC nucleobase notation summarized here) where: [7]
The AUG is the initiation codon encoding a methionine amino acid at the N-terminus of the protein. (Rarely, GUG is used as an initiation codon, but methionine is still the first amino acid as it is the met-tRNA in the initiation complex that binds to the mRNA). Variation within the Kozak sequence alters the "strength" thereof. Kozak sequence strength refers to the favorability of initiation, affecting how much protein is synthesized from a given mRNA. [4] [9] The A nucleotide of the "AUG" is delineated as +1 in mRNA sequences with the preceding base being labeled as −1, i.e. there is no 0 position. For a 'strong' consensus, the nucleotides at positions +4 (i.e. G in the consensus) and −3 (i.e. either A or G in the consensus) relative to the +1 nucleotide must both match the consensus. An 'adequate' consensus has only 1 of these sites, while a 'weak' consensus has neither. The cc at −1 and −2 are not as conserved, but contribute to the overall strength. [10] There is also evidence that a G in the -6 position is important in the initiation of translation. [4] While the +4 and the −3 positions in the Kozak sequence have the greatest relative importance in the establishing a favorable initiation context a CC or AA motif at −2 and −1 were found to be important in the initiation of translation in tobacco and maize plants. [11] Protein synthesis in yeast was found to be highly affected by composition of the Kozak sequence in yeast, with adenine enrichment resulting in higher levels of gene expression. [12] A suboptimal Kozak sequence can allow for PIC to scan past the first AUG site and start initiation at a downstream AUG codon. [13] [2]
The ribosome assembles on the start codon (AUG), located within the Kozak sequence. Prior to translation initiation, scanning is done by the pre-initiation complex (PIC). The PIC consists of the 40S (small ribosomal subunit) bound to the ternary complex, eIF2-GTP-intiatorMet tRNA (TC) to form the 43S ribosome. Assisted by several other initiation factors (eIF1 and eIF1A, eIF5, eIF3, polyA binding protein) it is recruited to the 5′ end of the mRNA. Eukaryotic mRNA is capped with a 7-methylguanosine (m7G) nucleotide which can help recruit the PIC to the mRNA and initiate scanning. This recruitment to the m7G 5′ cap is supported by the inability of eukaryotic ribosomes to translate circular mRNA, which has no 5′ end. [14] Once the PIC binds to the mRNA it scans until it reaches the first AUG codon in a Kozak sequence. [15] [16] This scanning is referred to as the scanning mechanism of initiation.
The scanning mechanism of Initiation starts when the PIC binds the 5′ end of the mRNA. Scanning is stimulated by Dhx29 and Ddx3/Ded1 and eIF4 proteins. [1] The Dhx29 and Ddx3/Ded1 are DEAD-box helicases that help to unwind any secondary mRNA structure which could hinder scanning. [17] The scanning of an mRNA continues until the first AUG codon on the mRNA is reached, this is known as the "First AUG Rule". [1] While exceptions to the "First AUG Rule" exist, most exceptions take place at a second AUG codon that is located 3 to 5 nucleotides downstream from the first AUG, or within 10 nucleotides from the 5′ end of the mRNA. [18] At the AUG codon a Methionine tRNA anticodon is recognized by mRNA codon. [19] Upon base pairing to the start codon the eIF5 in the PIC helps to hydrolyze a guanosine triphosphate (GTP) bound to the eIF2. [20] [21] This leads to the a structural rearrangement that commits the PIC to binding to the large ribosomal subunit (60S) and forming the ribosomal complex (80S). Once the 80S ribosome complex is formed then the elongation phase of translation starts.
The first start codon closest to the 5′ end of the strand is not always recognized if it is not contained in a Kozak-like sequence. Lmx1b is an example of a gene with a weak Kozak consensus sequence. [22] For initiation of translation from such a site, other features are required in the mRNA sequence in order for the ribosome to recognize the initiation codon. Exceptions to the first AUG rule may occur if it is not contained in a Kozak-like sequence. This is called leaky scanning and could be a potential way to control translation through initiation. [23] For initiation of translation from such a site, other features are required in the mRNA sequence in order for the ribosome to recognize the initiation codon.
It is believed that the PIC is stalled at the Kozak sequence by interactions between eIF2 and the −3 and +4 nucleotides in the Kozak position. [24] This stalling allows the start codon and the corresponding anticodon time to form the correct hydrogen bonding. The Kozak consensus sequence is so common that the similarity of the sequence around the AUG codon to the Kozak Sequence is used as a criterion for finding start codons in eukaryotes. [25]
The scanning mechanism of initiation, which utilizes the Kozak sequence, is found only in eukaryotes and has significant differences from the way bacteria initiate translation. The biggest difference is the existence of the Shine-Dalgarno (SD) sequence in mRNA for bacteria. The SD sequence is located near the start codon which is in contrast to the Kozak sequence which actually contains the start codon. The Shine Dalgarno sequence allows the 16S subunit of the small ribosome subunit to bind to the AUG (or alternative) start codon immediately. In contrast, scanning along the mRNA results in a more rigorous selection process for the AUG codon than in bacteria. [26] An example of bacterial start codon promiscuity can be seen in the use of the alternate start codons UUG and GUG for some genes. [27]
Archaeal transcripts use a mix of SD sequence, Kozak sequence, and leaderless initiation. Haloarchaea are known to have a variant of the Kozak consensus sequence in their Hsp70 genes. [28]
Marilyn Kozak demonstrated, through systematic study of point mutations, that any mutations of a strong consensus sequence in the −3 position or to the +4 position resulted in highly impaired translation initiation both in vitro and in vivo. [29] [30]
Research has shown that a mutation of G—>C in the −6 position of the β-globin gene (β+45; human) disrupted the haematological and biosynthetic phenotype function. This was the first mutation found in the Kozak sequence and showed a 30% decrease in translational efficiency. It was found in a family from the Southeast Italy and they suffered from thalassaemia intermedia. [4]
Similar observations were made regarding mutations in the position −5 from the start codon, AUG. Cytosine in this position, as opposed to thymine, showed more efficient translation and increased expression of the platelet adhesion receptor, glycoprotein Ibα in humans. [33]
Mutations to the Kozak sequence can also have drastic effects upon human health; in particular, certain forms of congenital heart disease are caused by Kozak sequence mutations in the GATA4 gene's 5' untranslated region. The GATA4 gene is responsible for gene expression in a wide variety of tissues including the heart. [34] When the guanosine at the -6 position in the Kozak sequence of GATA4 is mutated to a cytosine, a reduction in GATA4 protein levels results, which leads to a decrease in the expression of genes regulated by the GATA4 transcription factor and linked to the development of atrial septal defect. [35]
The ability of the Kozak sequence to optimize translation can result in novel initiation codons in the typically untranslated region of the 5′ (5′ UTR) end of the mRNA transcript. A G to A mutation was described by Bohlen et al. (2017) in a Kozak-like region in the SOX9 gene that created a new translation initiation codon in an out-of-frame open reading frame. The correct initiation codon was located in a region that did not match the Kozak consensus sequence as closely as the surrounding sequence of the new, upstream initiation site did, which resulted in reduced translation efficiency of functional SOX9 protein. The patient in whom this mutation was detected had developed acampomelic campomelic dysplasia, a developmental disorder that causes skeletal, reproductive and airway issues due to insufficient SOX9 expression. [32]
The Kozak consensus has been variously described as: [36]
65432-+234 (gcc)gccRccAUGG (Kozak 1987) AGNNAUGN ANNAUGG ACCAUGG (Spotts et al., 1997, mentioned in Kozak 2002) GACACCAUGG (H. sapiens HBB, HBD, R. norvegicus Hbb, etc.)
Biota | Phylum | Consensus sequences |
---|---|---|
Vertebrate (Kozak 1987) | gccRccATGG [7] | |
Fruit fly (Drosophila spp.) | Arthropoda | atMAAMATGamc [37] |
Budding yeast (Saccharomyces cerevisiae) | Ascomycota | aAaAaAATGTCt [38] |
Slime mold (Dictyostelium discoideum) | Amoebozoa | aaaAAAATGRna [39] |
Ciliate | Ciliophora | nTaAAAATGRct [39] |
Malarial protozoa (Plasmodium spp.) | Apicomplexa | taaAAAATGAan [39] |
Toxoplasma (Toxoplasma gondii) | Apicomplexa | gncAaaATGg [40] |
Trypanosomatidae | Euglenozoa | nnnAnnATGnC [39] |
Terrestrial plants | acAACAATGGC [41] | |
Microalga (Chlamydomonas reinhardtii) | Chlorophyta | gccAaCATGGcg [42] [43] |
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.
Transfer RNA is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length. In a cell, it provides the physical link between the genetic code in messenger RNA (mRNA) and the amino acid sequence of proteins, carrying the correct sequence of amino acids to be combined by the protein-synthesizing machinery, the ribosome. Each three-nucleotide codon in mRNA is complemented by a three-nucleotide anticodon in tRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.
The 5′ untranslated region is the region of a messenger RNA (mRNA) that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes. While called untranslated, the 5′ UTR or a portion of it is sometimes translated into a protein product. This product can then regulate the translation of the main coding sequence of the mRNA. In many organisms, however, the 5′ UTR is completely untranslated, instead forming a complex secondary structure to regulate translation.
The Shine–Dalgarno (SD) sequence is a ribosomal binding site in bacterial and archaeal messenger RNA, generally located around 8 bases upstream of the start codon AUG. The RNA sequence helps recruit the ribosome to the messenger RNA (mRNA) to initiate protein synthesis by aligning the ribosome with the start codon. Once recruited, tRNA may add amino acids in sequence as dictated by the codons, moving downstream from the translational start site.
An internal ribosome entry site, abbreviated IRES, is an RNA element that allows for translation initiation in a cap-independent manner, as part of the greater process of protein synthesis. Initiation of eukaryotic translation nearly always occurs at and is dependent on the 5' cap of mRNA molecules, where the translation initiation complex forms and ribosomes engage the mRNA. IRES elements, however allow ribosomes to engage the mRNA and begin translation independently of the 5' cap.
The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and archaea and a N-formylmethionine (fMet) in bacteria, mitochondria and plastids.
Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.
Directionality, in molecular biology and biochemistry, is the end-to-end chemical orientation of a single strand of nucleic acid. In a single strand of DNA or RNA, the chemical convention of naming carbon atoms in the nucleotide pentose-sugar-ring means that there will be a 5′ end, which frequently contains a phosphate group attached to the 5′ carbon of the ribose ring, and a 3′ end, which typically is unmodified from the ribose -OH substituent. In a DNA double helix, the strands run in opposite directions to permit base pairing between them, which is essential for replication or transcription of the encoded information.
Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. Several initiation factors form a complex with the small 40S ribosomal subunit and Met-tRNAiMet called the 43S preinitiation complex. Additional factors of the eIF4F complex recruit the 43S PIC to the five-prime cap structure of the mRNA, from which the 43S particle scans 5'-->3' along the mRNA to reach an AUG start codon. Recognition of the start codon by the Met-tRNAiMet promotes gated phosphate and eIF1 release to form the 48S preinitiation complex, followed by large 60S ribosomal subunit recruitment to form the 80S ribosome. There exist many more eukaryotic initiation factors than prokaryotic initiation factors, reflecting the greater biological complexity of eukaryotic translation. There are at least twelve eukaryotic initiation factors, composed of many more polypeptides, and these are described below.
A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers to bacterial sequences, although internal ribosome entry sites (IRES) have been described in mRNAs of eukaryotic cells or viruses that infect eukaryotes. Ribosome recruitment in eukaryotes is generally mediated by the 5' cap present on eukaryotic mRNAs.
In molecular genetics, an untranslated region refers to either of two sections, one on each side of a coding sequence on a strand of mRNA. If it is found on the 5' side, it is called the 5' UTR, or if it is found on the 3' side, it is called the 3' UTR. mRNA is RNA that carries information from DNA to the ribosome, the site of protein synthesis (translation) within a cell. The mRNA is initially transcribed from the corresponding DNA sequence and then translated into protein. However, several regions of the mRNA are usually not translated into protein, including the 5' and 3' UTRs.
Ribosomal frameshifting, also known as translational frameshifting or translational recoding, is a biological phenomenon that occurs during translation that results in the production of multiple, unique proteins from a single mRNA. The process can be programmed by the nucleotide sequence of the mRNA and is sometimes affected by the secondary, 3-dimensional mRNA structure. It has been described mainly in viruses, retrotransposons and bacterial insertion elements, and also in some cellular genes.
Leaky scanning is a mechanism used during the initiation phase of eukaryotic translation that enables regulation of gene expression. During initiation, the small 40S ribosomal subunit "scans" or moves in a 5' --> 3' direction along the 5'UTR to locate a start codon to commence elongation. Sometimes, the scanning ribosome bypasses the initial AUG start codon and begins translation at further downstream AUG start codons. Translation in eukaryotic cells according to most scanning mechanisms occurs at the AUG start codon proximal to the 5' end of mRNA; however, the scanning ribosome may encounter an “unfavorable nucleotide context” around the start codon and continue scanning.
Red clover necrotic mosaic virus (RCNMV) contains several structural elements present within the 3′ and 5′ untranslated regions (UTR) of the genome that enhance translation. In eukaryotes transcription is a prerequisite for translation. During transcription the pre-mRNA transcript is processes where a 5′ cap is attached onto mRNA and this 5′ cap allows for ribosome assembly onto the mRNA as it acts as a binding site for the eukaryotic initiation factor eIF4F. Once eIF4F is bound to the mRNA this protein complex interacts with the poly(A) binding protein which is present within the 3′ UTR and results in mRNA circularization. This multiprotein-mRNA complex then recruits the ribosome subunits and scans the mRNA until it reaches the start codon. Transcription of viral genomes differs from eukaryotes as viral genomes produce mRNA transcripts that lack a 5’ cap site. Despite lacking a cap site viral genes contain a structural element within the 5’ UTR known as an internal ribosome entry site (IRES). IRES is a structural element that recruits the 40s ribosome subunit to the mRNA within close proximity of the start codon.
In molecular biology, a riboregulator is a ribonucleic acid (RNA) that responds to a signal nucleic acid molecule by Watson-Crick base pairing. A riboregulator may respond to a signal molecule in any number of manners including, translation of the RNA into a protein, activation of a ribozyme, release of silencing RNA (siRNA), conformational change, and/or binding other nucleic acids. Riboregulators contain two canonical domains, a sensor domain and an effector domain. These domains are also found on riboswitches, but unlike riboswitches, the sensor domain only binds complementary RNA or DNA strands as opposed to small molecules. Because binding is based on base-pairing, a riboregulator can be tailored to differentiate and respond to individual genetic sequences and combinations thereof.
The Consensus Coding Sequence (CCDS) Project is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies. The CCDS project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier, and ensures that they are consistently represented by the National Center for Biotechnology Information (NCBI), Ensembl, and UCSC Genome Browser. The integrity of the CCDS dataset is maintained through stringent quality assurance testing and on-going manual curation.
Marilyn S. Kozak is an American professor of biochemistry at the Robert Wood Johnson Medical School. She was previously at the University of Medicine and Dentistry of New Jersey before the school was merged. She was awarded a PhD in microbiology by Johns Hopkins University studying the synthesis of the Bacteriophage MS2, advised by Daniel Nathans.
Translation regulation by 5′ transcript leader cis-elements is a process in cellular translation.