Leaky scanning

Last updated

Leaky scanning is a mechanism used during the initiation phase of eukaryotic translation that enables regulation of gene expression. During initiation, the small 40S ribosomal subunit (as a 43S PIC) "scans" or moves in a 5' --> 3' direction along the 5'UTR to locate a start codon to commence elongation. Sometimes, the scanning ribosome bypasses the initial AUG start codon and begins translation at further downstream AUG start codons. [1] Translation in eukaryotic cells according to most scanning mechanisms occurs at the AUG start codon proximal to the 5' end of mRNA; however, the scanning ribosome may encounter an “unfavorable nucleotide context” around the start codon and continue scanning. [2]

Contents

There are certain instances where initiation has been found to occur upstream at a non-AUG codon. Eukaryotic genes containing consistent G-C rich leader sequences are frequently observed performing this mechanism. It is hypothesized that scanning is slowed due to a secondary structure which allows for the binding of Met-tRNA with the mismatch codon. [3]

Several viruses use a leaky scanning mechanism to produce vital proteins which implies that leaky scanning is not a consequence of inadequacy, but instead allows viruses to overcome the high selective pressures of competing with their hosts. [4] Molecular biologists are narrowing the search of the ideal nucleotide environment for initiation of translation, and the mechanisms by which viruses replicate. [1]

Discovery

Through several studies Marilyn Kozak was the first to recognize the main role of scanning during initiation of translation in mammalian cells. The AUG codon in mammals is optimally recognized by the context GCCRCCAUGG, also known as a “Kozak Consensus Sequence.” [5] Purine (R) and each of the nucleotides within this sequence are highly conserved and provide an important function in recognition and initiation of translation for many 40S ribosomal subunits. With an optimal context at an AUG start codon, ribosomes will begin initiation at that point. A weak context occurs when the sequences adjacent to the AUG start codon has deviated from the consensus sequence. A few ribosomes will still initiate translation in the weak location, but the majority will perform leaky scanning and initiate downstream. As a consequence, different proteins are likely to be produced. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Messenger RNA</span> RNA that is read by the ribosome to produce a protein

In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.

<span class="mw-page-title-main">Translation (biology)</span> Cellular process of protein synthesis

In molecular biology and genetics, translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum synthesize proteins after the process of transcription of DNA to RNA in the cell's nucleus. The entire process is called gene expression.

The 5′ untranslated region is the region of a messenger RNA (mRNA) that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes. While called untranslated, the 5′ UTR or a portion of it is sometimes translated into a protein product. This product can then regulate the translation of the main coding sequence of the mRNA. In many organisms, however, the 5′ UTR is completely untranslated, instead forming a complex secondary structure to regulate translation.

The Shine–Dalgarno (SD) sequence is a ribosomal binding site in bacterial and archaeal messenger RNA, generally located around 8 bases upstream of the start codon AUG. The RNA sequence helps recruit the ribosome to the messenger RNA (mRNA) to initiate protein synthesis by aligning the ribosome with the start codon. Once recruited, tRNA may add amino acids in sequence as dictated by the codons, moving downstream from the translational start site.

An internal ribosome entry site, abbreviated IRES, is an RNA element that allows for translation initiation in a cap-independent manner, as part of the greater process of protein synthesis. In eukaryotic translation, initiation typically occurs at the 5' end of mRNA molecules, since 5' cap recognition is required for the assembly of the initiation complex. The location for IRES elements is often in the 5'UTR, but can also occur elsewhere in mRNAs.

Ribosome shunting is a mechanism of translation initiation in which ribosomes bypass, or "shunt over", parts of the 5' untranslated region to reach the start codon. However, a benefit of ribosomal shunting is that it can translate backwards allowing more information to be stored than usual in an mRNA molecule. Some viral RNAs have been shown to use ribosome shunting as a more efficient form of translation during certain stages of viral life cycle or when translation initiation factors are scarce. Some viruses known to use this mechanism include adenovirus, Sendai virus, human papillomavirus, duck hepatitis B pararetrovirus, rice tungro bacilliform viruses, and cauliflower mosaic virus. In these viruses the ribosome is directly translocated from the upstream initiation complex to the start codon (AUG) without the need to unwind RNA secondary structures.

<span class="mw-page-title-main">Start codon</span> First codon of a messenger RNA transcript translated by a ribosome

The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a N-formylmethionine (fMet) in bacteria, mitochondria and plastids. The most common start codon is AUG.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: gene translation, elongation, termination, and recapping.

The Kozak consensus sequence is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. Regarded as the optimum sequence for initiating translation in eukaryotes, the sequence is an integral aspect of protein regulation and overall cellular health as well as having implications in human disease. It ensures that a protein is correctly translated from the genetic message, mediating ribosome assembly and translation initiation. A wrong start site can result in non-functional proteins. As it has become more studied, expansions of the nucleotide sequence, bases of importance, and notable exceptions have arisen. The sequence was named after the scientist who discovered it, Marilyn Kozak. Kozak discovered the sequence through a detailed analysis of DNA genomic sequences.

<span class="mw-page-title-main">Hepatitis A virus internal ribosome entry site (IRES)</span>

This family represents the internal ribosome entry site (IRES) of the hepatitis A virus. HAV IRES is a 450 nucleotide long sequence located in the 735 nt long 5’ UTR of Hepatitis A viral RNA genome. IRES elements allow cap and end-independent translation of mRNA in the host cell. The IRES achieves this by mediating the internal initiation of translation by recruiting a ribosomal 40S pre-initiation complex directly to the initiation codon and eliminates the requirement for eukaryotic initiation factor, eIF4F.

<span class="mw-page-title-main">Hepatitis C virus internal ribosome entry site</span>

The Hepatitis C virus internal ribosome entry site, or HCV IRES, is an RNA structure within the 5'UTR of the HCV genome that mediates cap-independent translation initiation.

A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers to bacterial sequences, although internal ribosome entry sites (IRES) have been described in mRNAs of eukaryotic cells or viruses that infect eukaryotes. Ribosome recruitment in eukaryotes is generally mediated by the 5' cap present on eukaryotic mRNAs.

<span class="mw-page-title-main">Untranslated region</span> Non-coding regions on either end of mRNA

In molecular genetics, an untranslated region refers to either of two sections, one on each side of a coding sequence on a strand of mRNA. If it is found on the 5' side, it is called the 5' UTR, or if it is found on the 3' side, it is called the 3' UTR. mRNA is RNA that carries information from DNA to the ribosome, the site of protein synthesis (translation) within a cell. The mRNA is initially transcribed from the corresponding DNA sequence and then translated into protein. However, several regions of the mRNA are usually not translated into protein, including the 5' and 3' UTRs.

The eukaryotic initiation factor-4A (eIF4A) family consists of 3 closely related proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that function to unwind double-stranded RNA.

<span class="mw-page-title-main">Red clover necrotic mosaic virus translation enhancer elements</span>

Red clover necrotic mosaic virus (RCNMV) contains several structural elements present within the 3′ and 5′ untranslated regions (UTR) of the genome that enhance translation. In eukaryotes transcription is a prerequisite for translation. During transcription the pre-mRNA transcript is processes where a 5′ cap is attached onto mRNA and this 5′ cap allows for ribosome assembly onto the mRNA as it acts as a binding site for the eukaryotic initiation factor eIF4F. Once eIF4F is bound to the mRNA this protein complex interacts with the poly(A) binding protein which is present within the 3′ UTR and results in mRNA circularization. This multiprotein-mRNA complex then recruits the ribosome subunits and scans the mRNA until it reaches the start codon. Transcription of viral genomes differs from eukaryotes as viral genomes produce mRNA transcripts that lack a 5’ cap site. Despite lacking a cap site viral genes contain a structural element within the 5’ UTR known as an internal ribosome entry site (IRES). IRES is a structural element that recruits the 40s ribosome subunit to the mRNA within close proximity of the start codon.

Translational regulation refers to the control of the levels of protein synthesized from its mRNA. This regulation is vastly important to the cellular response to stressors, growth cues, and differentiation. In comparison to transcriptional regulation, it results in much more immediate cellular adjustment through direct regulation of protein concentration. The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon, but can also involve modulation of peptide elongation, termination of protein synthesis, or ribosome biogenesis. While these general concepts are widely conserved, some of the finer details in this sort of regulation have been proven to differ between prokaryotic and eukaryotic organisms.

The Consensus Coding Sequence (CCDS) Project is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies. The CCDS project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier, and ensures that they are consistently represented by the National Center for Biotechnology Information (NCBI), Ensembl, and UCSC Genome Browser. The integrity of the CCDS dataset is maintained through stringent quality assurance testing and on-going manual curation.

Marilyn S. Kozak is an American professor of biochemistry at the Robert Wood Johnson Medical School. She was previously at the University of Medicine and Dentistry of New Jersey before the school was merged. She was awarded a PhD in microbiology by Johns Hopkins University studying the synthesis of the Bacteriophage MS2, advised by Daniel Nathans. In her original faculty job proposal, she sought to study the mechanism of eukaryotic translation initiation, a problem long thought to have already been solved by Joan Steitz. While in the Department of Biological Sciences at University of Pittsburgh, she published a series of studies that established the scanning model of translation initiation and the Kozak consensus sequence. Her current research interests are unknown as her last publication was in 2008.

<span class="mw-page-title-main">Translation regulation by 5′ transcript leader cis-elements</span>

Translation regulation by 5′ transcript leader cis-elements is a process in cellular translation.

References

  1. 1 2 Kozak, Marilyn. “Initiation of Translation in prokaryotes and eukaryotes.” Gene 234 (1999): 187-208. Academic Search Complete. Web. 10 June 2014.
  2. Herzog, Etienne., et al. “Translation of the Second Gene of Peanut Clump Virus RNA 2 Occurs by Leaky Scanning In Vitro.” Virology 208. (1995): 215-225. Academic Search Complete. Web. 10 June 1014.
  3. 1 2 Kozak, Marilyn. “Pushing the limits of the scanning mechanism of initiation of translation.” Gene 299 (2002): 1-34. Academic Search Complete. Web. 11 June 2014.
  4. Ryaboba, Lyubov., et al. “Translation reinitiation and leaky scanning in plant viruses.” Virus Research 119 (2006): 52-62 Academic Search Complete. Web. 23 June 2014.
  5. Hinnebusch, Alan., “Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes.” American Society for Microbiology Vol. 75 no. 3. (2011): 434-467. Web. 11 June 2014.