The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and archaea and a N-formylmethionine (fMet) in bacteria, mitochondria and plastids.
The start codon is often preceded by a 5' untranslated region (5' UTR). In prokaryotes this includes the ribosome binding site.
In all three domains of life, the start codon is decoded by a special "initiation" transfer RNA different from the tRNAs used for elongation. There are important structural differences between an initiating tRNA and an elongating one, with distinguish features serving to satisfy the constraints of the translation system. In bacteria and organelles, an acceptor stem C1:A72 mismatch guide formylation, which is essential direct recruitment by the 30S ribosome into the P site; so-called "3GC" base pairs allow assembly into the 70S ribosome. [1] In eukaryotes and archaea, the T stem prevents the elongation factors from binding, while eIF2 specifically recognizes the attached methionine and a A1:U72 basepair. [2]
In any case, the natural initiating tRNA only codes for methionine. [3] Knowledge of the key recognizing features has allowed researchers to construct alternative initiating tRNAs that code for different amino acids; see below.
Alternative start codons are different from the standard AUG codon and are found in both prokaryotes (bacteria and archaea) and eukaryotes. Alternate start codons are still translated as Met when they are at the start of a protein (even if the codon encodes a different amino acid otherwise). This is because a separate tRNA is used for initiation. [3]
Alternate start codons (non-AUG) are very rare in eukaryotic genomes: a wide range of mechanisms work to guarantee the relative fidelity of AUG initiation. [4] However, naturally occurring non-AUG start codons have been reported for some cellular mRNAs. [5] Seven out of the nine possible single-nucleotide substitutions at the AUG start codon of dihydrofolate reductase are functional as translation start sites in mammalian cells. [6]
Bacteria do not generally have the wide range of translation factors monitoring start codon fidelity. GUG and UUG are the main, even "canonical", alternate start codons. [4] GUG in particular is important to controlling the replication of plasmids. [4]
E. coli uses 83% AUG (3542/4284), 14% (612) GUG, 3% (103) UUG [7] and one or two others (e.g., an AUU and possibly a CUG). [8] [9]
Well-known coding regions that do not have AUG initiation codons are those of lacI (GUG) [10] [11] and lacA (UUG) [12] in the E. coli lac operon. Two more recent studies have independently shown that 17 or more non-AUG start codons may initiate translation in E. coli. [13] [14]
Mitochondrial genomes use alternate start codons more significantly (AUA and AUG in humans). [15] Many such examples, with codons, systematic range, and citations, are given in the NCBI list of translation tables. [16]
Archaea, which are prokaryotes with a translation machinery similar to but simpler than that of eukaryotes, allow initiation at UUG and GUG. [4]
These are "alternative" start codons in the sense that they are upstream of the regular start codons and thus could be used as alternative start codons. More than half of all human mRNAs have at least one AUG codon upstream (uAUG) of their annotated translation initiation starts (TIS) (58% in the current versions of the human RefSeq sequence). Their potential use as TISs could result in translation of so-called upstream Open Reading Frames (uORFs). uORF translation usually results in the synthesis of short polypeptides, some of which have been shown to be functional, e.g., in ASNSD1, MIEF1, MKKS, and SLC35A4. [17] However, it is believed that most translated uORFs only have a mild inhibitory effect on downstream translation because most uORF starts are leaky (i.e. don't initiate translation or because ribosomes terminating after translation of short ORFs are often capable of reinitiating). [17]
Amino-acid biochemical properties | Nonpolar | Polar | Basic | Acidic | Termination: stop codon |
1st base | 2nd base | 3rd base | |||||||
---|---|---|---|---|---|---|---|---|---|
U | C | A | G | ||||||
U | UUU | (Phe/F) Phenylalanine | UCU | (Ser/S) Serine | UAU | (Tyr/Y) Tyrosine | UGU | (Cys/C) Cysteine | U |
UUC | UCC | UAC | UGC | C | |||||
UUA | (Leu/L) Leucine | UCA | UAA | Stop (Ochre) [B] | UGA | Stop (Opal) [B] | A | ||
UUG [A] | UCG | UAG | Stop (Amber) [B] | UGG | (Trp/W) Tryptophan | G | |||
C | CUU | CCU | (Pro/P) Proline | CAU | (His/H) Histidine | CGU | (Arg/R) Arginine | U | |
CUC | CCC | CAC | CGC | C | |||||
CUA | CCA | CAA | (Gln/Q) Glutamine | CGA | A | ||||
CUG | CCG | CAG | CGG | G | |||||
A | AUU | (Ile/I) Isoleucine | ACU | (Thr/T) Threonine | AAU | (Asn/N) Asparagine | AGU | (Ser/S) Serine | U |
AUC | ACC | AAC | AGC | C | |||||
AUA | ACA | AAA | (Lys/K) Lysine | AGA | (Arg/R) Arginine | A | |||
AUG [A] | (Met/M) Methionine | ACG | AAG | AGG | G | ||||
G | GUU | (Val/V) Valine | GCU | (Ala/A) Alanine | GAU | (Asp/D) Aspartic acid | GGU | (Gly/G) Glycine | U |
GUC | GCC | GAC | GGC | C | |||||
GUA | GCA | GAA | (Glu/E) Glutamic acid | GGA | A | ||||
GUG [A] | GCG | GAG | GGG | G |
In addition to the canonical initiation-tRNA and AUG codon pathway, mammalian cells can initiate translation with leucine using a specific leucyl-tRNA that decodes the codon CUG. This mechanism is independent of eIF2. [22] [23] It is also previously known that translation started by an internal ribosome entry site, which bypasses a number of regular eukaryotic initiation systems, can have a non-methinone start with GCU or CAA codons. [24] [25]
Engineered initiator tRNA (tRNAfMet
CUA, changed from a MetY tRNAfMet
CAU) have been used to initiate translation at the amber stop codon UAG in E. coli. Initiation with this tRNA not only inserts the traditional formylmethionine, but also formylglutamine, as glutamyl-tRNA synthase also recognizes the new tRNA. [26] (Recall from above that the bacterial translation initiation system does not specifically check for methionine, only the formyl modification). [1] One study has shown that the amber initiator tRNA does not initiate translation to any measurable degree from genomically-encoded UAG codons, only plasmid-borne reporters with strong upstream Shine-Dalgarno sites. [27]
This section is missing information about new progress mentioned in introduction of doi:10.3389/fchem.2021.772648 (Ngo et al., 2013 might be worth a special mention).(December 2023) |
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.
In molecular biology, open reading frames (ORFs) are defined as spans of DNA sequence between the start and stop codons. Usually, this is considered within a studied region of a prokaryotic DNA sequence, where only one of the six possible reading frames will be "open". Such an ORF may contain a start codon and by definition cannot extend beyond a stop codon. That start codon indicates where translation may start. The transcription termination site is located after the ORF, beyond the translation stop codon. If transcription were to cease before the stop codon, an incomplete protein would be made during translation.
The 5′ untranslated region is the region of a messenger RNA (mRNA) that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes. While called untranslated, the 5′ UTR or a portion of it is sometimes translated into a protein product. This product can then regulate the translation of the main coding sequence of the mRNA. In many organisms, however, the 5′ UTR is completely untranslated, instead forming a complex secondary structure to regulate translation.
The Shine–Dalgarno (SD) sequence is a ribosomal binding site in bacterial and archaeal messenger RNA, generally located around 8 bases upstream of the start codon AUG. The RNA sequence helps recruit the ribosome to the messenger RNA (mRNA) to initiate protein synthesis by aligning the ribosome with the start codon. Once recruited, tRNA may add amino acids in sequence as dictated by the codons, moving downstream from the translational start site.
Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.
N-Formylmethionine is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally.
The Kozak consensus sequence is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. Regarded as the optimum sequence for initiating translation in eukaryotes, the sequence is an integral aspect of protein regulation and overall cellular health as well as having implications in human disease. It ensures that a protein is correctly translated from the genetic message, mediating ribosome assembly and translation initiation. A wrong start site can result in non-functional proteins. As it has become more studied, expansions of the nucleotide sequence, bases of importance, and notable exceptions have arisen. The sequence was named after the scientist who discovered it, Marilyn Kozak. Kozak discovered the sequence through a detailed analysis of DNA genomic sequences.
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene. A gene is transcribed (copied) from DNA into RNA, which can either be non-coding (ncRNA) with a direct function, or an intermediate messenger (mRNA) that is then translated into protein. Each of these steps is controlled by specific sequence elements, or regions, within the gene. Every gene, therefore, requires multiple sequence elements to be functional. This includes the sequence that actually encodes the functional protein or ncRNA, as well as multiple regulatory sequence regions. These regions may be as short as a few base pairs, up to many thousands of base pairs long.
A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers to bacterial sequences, although internal ribosome entry sites (IRES) have been described in mRNAs of eukaryotic cells or viruses that infect eukaryotes. Ribosome recruitment in eukaryotes is generally mediated by the 5' cap present on eukaryotic mRNAs.
In molecular genetics, an untranslated region refers to either of two sections, one on each side of a coding sequence on a strand of mRNA. If it is found on the 5' side, it is called the 5' UTR, or if it is found on the 3' side, it is called the 3' UTR. mRNA is RNA that carries information from DNA to the ribosome, the site of protein synthesis (translation) within a cell. The mRNA is initially transcribed from the corresponding DNA sequence and then translated into protein. However, several regions of the mRNA are usually not translated into protein, including the 5' and 3' UTRs.
Translational regulation refers to the control of the levels of protein synthesized from its mRNA. This regulation is vastly important to the cellular response to stressors, growth cues, and differentiation. In comparison to transcriptional regulation, it results in much more immediate cellular adjustment through direct regulation of protein concentration. The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon, but can also involve modulation of peptide elongation, termination of protein synthesis, or ribosome biogenesis. While these general concepts are widely conserved, some of the finer details in this sort of regulation have been proven to differ between prokaryotic and eukaryotic organisms.
A codon table can be used to translate a genetic code into a sequence of amino acids. The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. The mRNA sequence is determined by the sequence of genomic DNA. In this context, the standard genetic code is referred to as translation table 1. It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5′-to-3′ direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome.
The Consensus Coding Sequence (CCDS) Project is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies. The CCDS project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier, and ensures that they are consistently represented by the National Center for Biotechnology Information (NCBI), Ensembl, and UCSC Genome Browser. The integrity of the CCDS dataset is maintained through stringent quality assurance testing and on-going manual curation.
In molecular biology, the single-domain protein SUI1 is a translation initiation factor often found in the fungus, Saccharomyces cerevisiae but it is also found in other eukaryotes and prokaryotes as well as archaea. It is otherwise known as Eukaryotic translation initiation factor 1 (eIF1) in eukaryotes or YciH in bacteria.
The vertebrate mitochondrial code is the genetic code found in the mitochondria of all vertebrata.
The bacterial, archaeal and plant plastid code is the DNA code used by bacteria, archaea, prokaryotic viruses and chloroplast proteins. It is essentially the same as the standard code, however there are some variations in alternative start codons.
The invertebrate mitochondrial code is a genetic code used by the mitochondrial genome of invertebrates. Mitochondria contain their own DNA and reproduce independently from their host cell. Variation in translation of the mitochondrial genetic code occurs when DNA codons result in non-standard amino acids has been identified in invertebrates, most notably arthropods. This variation has been helpful as a tool to improve upon the phylogenetic tree of invertebrates, like flatworms.
The pachysolen tannophilus nuclear code is a genetic code found in the ascomycete fungus Pachysolen tannophilus.
Translation regulation by 5′ transcript leader cis-elements is a process in cellular translation.