EF-4

Last updated
Elongation factor 4
Identifiers
SymbolEF-4
InterPro IPR006297
For well-annotaterd examples, see P60785 (E. coli LepA) and Q8N442 (human GUF1).

Elongation factor 4 (EF-4) is an elongation factor that is thought to back-translocate on the ribosome during the translation of RNA to proteins. It is found near-universally in bacteria [1] and in eukaryotic endosymbiotic organelles including the mitochondria and the plastid. [2] [3] Responsible for proofreading during protein synthesis, EF-4 is a recent addition to the nomenclature of bacterial elongation factors. [4]

Contents

Prior to its recognition as an elongation factor, EF-4 was known as leader peptidase A (LepA), as it is the first cistron on the operon carrying the bacterial leader peptidase. In eukaryotes it is traditionally called GUF1 (GTPase of Unknown Function 1). [5] It has the preliminary EC number 3.6.5.n1. [6]

Evolutionary background

LepA has a highly conserved sequence. LepA orthologs have been found in bacteria and almost all eukaryotes. The conservation in LepA has been shown to cover the entire protein. More specifically, the amino acid identity of LepA among bacterial orthologs ranges from 55%-68%. [4]

Two forms of LepA have been observed; one form of LepA branches with mitochondrial LepA sequences, while the second form branches with cyanobacterial orthologs. These findings demonstrate that LepA is significant for bacteria, mitochondria, and plastids. LepA is absent from archaea. [4]

Structure

The gene encoding LepA is known to be the first cistron as part of a bicistron operon. LepA is a polypeptide of 599 amino acids with a molecular weight of 67 kDa. The amino acid sequence of LepA indicates that it is a G protein, which consists of five known domains. The first four domains are strongly related to domains I, II, III, and V of primary elongation factor EF-G. However, the last domain of LepA is unique. This specific domain resides on the C-terminal end of the protein structure. [7] This arrangement of LepA has been observed in the mitochondria of yeast cells to human cells.

Function

LepA is suspected to improve the fidelity of translation by recognizing a ribosome with mistranslocated tRNA and consequently inducing a back-translocation. By back-translocating the already post-transcriptionally modified ribosome, the EF-G factor capable of secondary translocation. Back-translocation by LepA occurs at a similar rate as an EF-G-dependent translocation. As mentioned above, EF-G's structure is highly analogous to LepA's structure; LepA's function is thus similarly analogous to EF-G's function. However, Domain IV of EF-G has been shown through several studies to occupy the decoding sequence of the A site after the tRNAs have been translocated from A and P sites to the P and E sites. Thus, domain IV of EF-G prevents back-movement of the tRNA. Despite the structural similarities between LepA and EF-G, LepA lacks this Domain IV. Thus LepA reduces the activation barrier between Pre and POST states in a similar way to EF-G but is, at the same time, able to catalyze a back-translocation rather that a canonical translocation.

Activity

LepA exhibits uncoupled GTPase activity. This activity is stimulated by the ribosome to the same extent as the activity of EF-G, which is known to have the strongest ribosome-dependent GTPase activity among all characterized G proteins involved in translation. Conversely, uncoupled GTPase activity occurs when the ribosome stimulation of GTP cleavage is not directly dependent on protein synthesis. In the presence of GTP, LepA works catalytically. On the other hand, in the presence of the nonhydrolysable GTP – GDPNP – the LepA action becomes stoichiometric, saturating at about one molecule per 70S ribosomes. This data demonstrates that GTP cleavage is required for dissociation of LepA from the ribosome, which is demonstrative of a typical G protein. At low concentrations of LepA (less than or equal to 3 molecules per 70S ribosome), LepA specifically recognizes incorrectly translocated ribosomes, back-translocates them, and thus allows EF-G to have a second chance to catalyze the correct translocation reaction. At high concentrations (about 1 molecule per 70S ribosome), LepA loses its specificity and back-translocates every POST ribosome. This places the translational machinery in a nonreproductive mode. This explains the toxicity of LepA when it is found in a cell in high concentrations. Hence, at low concentrations LepA significantly improves the yield and activity of synthesized proteins; however, at high concentrations LepA is toxic to cells.

Additionally, LepA has an effect on peptide bond formation. Through various studies in which functional derivatives of ribosomes were mixed with puromycin (an analog of the 3' end of an aa-tRNA) it was determined that adding LepA to a post transcriptionally modified ribosome prevents dipeptide formation as it inhibits the binding of aa-tRNA to the A site.

Experimental data

There have been various experiments elucidating the structure and function of LepA. One notable study is termed the "toeprinting experiment": this experiment helped to determine LepA's ability to back-translocate. In this case, a primer was extended via reverse transcription along mRNA which was ribosome-bound. The primers from modified mRNA strands from various ribosomes were extended with and without LepA. An assay was then conducted with both PRE and POST states, and cleavage studies revealed enhanced positional cleavage in the POST state as opposed to the PRE state. Since the POST state had been in the presence of LepA (plus GTP), it was determined that the strong signal characteristic of the POST state was the result of LepA which then brought the signal down to the level of the PRE state. Such a study demonstrated that that ribosome, upon binding to the LepA-GTP complex assumes the PRE state configuration.

See also

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of the cell via secretion. Information contained in the protein itself directs this delivery process. Correct sorting is crucial for the cell; errors or dysfunction in sorting have been linked to multiple diseases.

The signal recognition particle (SRP) is an abundant, cytosolic, universally conserved ribonucleoprotein that recognizes and targets specific proteins to the endoplasmic reticulum in eukaryotes and the plasma membrane in prokaryotes.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis.

A release factor is a protein that allows for the termination of translation by recognizing the termination codon or stop codon in an mRNA sequence. They are named so because they release new peptides from the ribosome.

<span class="mw-page-title-main">Elongation factor</span> Proteins functioning in translation

Elongation factors are a set of proteins that function at the ribosome, during protein synthesis, to facilitate translational elongation from the formation of the first to the last peptide bond of a growing polypeptide. Most common elongation factors in prokaryotes are EF-Tu, EF-Ts, EF-G. Bacteria and eukaryotes use elongation factors that are largely homologous to each other, but with distinct structures and different research nomenclatures.

<span class="mw-page-title-main">EF-Tu</span> Prokaryotic elongation factor

EF-Tu is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome. As a reflection of its crucial role in translation, EF-Tu is one of the most abundant and highly conserved proteins in prokaryotes. It is found in eukaryotic mitochondria as TUFM.

Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. Several initiation factors form a complex with the small 40S ribosomal subunit and Met-tRNAiMet called the 43S preinitiation complex. Additional factors of the eIF4F complex recruit the 43S PIC to the five-prime cap structure of the mRNA, from which the 43S particle scans 5'-->3' along the mRNA to reach an AUG start codon. Recognition of the start codon by the Met-tRNAiMet promotes gated phosphate and eIF1 release to form the 48S preinitiation complex, followed by large 60S ribosomal subunit recruitment to form the 80S ribosome. There exist many more eukaryotic initiation factors than prokaryotic initiation factors, reflecting the greater biological complexity of eukaryotic translation. There are at least twelve eukaryotic initiation factors, composed of many more polypeptides, and these are described below.

A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide translation.

Protein-synthesizing GTPases are enzymes involved in mRNA translation into protein by the ribosome, with systematic name GTP phosphohydrolase (mRNA-translation-assisting). They usually include translation initiation factors such as IF-2 and translation elongation factors such as EF-Tu.

<span class="mw-page-title-main">EF-G</span> Prokaryotic elongation factor

EF-G is a prokaryotic elongation factor involved in protein translation. As a GTPase, EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome.

<span class="mw-page-title-main">Protein synthesis inhibitor</span> Inhibitors of translation

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

EF-Ts is one of the prokaryotic elongation factors. It is found in human mitochondria as TSFM. It is similar to eukaryotic EF-1B.

The P-site is the second binding site for tRNA in the ribosome. The other two sites are the A-site (aminoacyl), which is the first binding site in the ribosome, and the E-site (exit), the third. During protein translation, the P-site holds the tRNA which is linked to the growing polypeptide chain. When a stop codon is reached, the peptidyl-tRNA bond of the tRNA located in the P-site is cleaved releasing the newly synthesized protein. During the translocation step of the elongation phase, the mRNA is advanced by one codon, coupled to movement of the tRNAs from the ribosomal A to P and P to E sites, catalyzed by elongation factor EF-G.

<span class="mw-page-title-main">Elongation factor P</span>

EF-P is an essential protein that in bacteria stimulates the formation of the first peptide bonds in protein synthesis. Studies show that EF-P prevents ribosomes from stalling during the synthesis of proteins containing consecutive prolines. EF-P binds to a site located between the binding site for the peptidyl tRNA and the exiting tRNA. It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. The EF-P protein shape and size is very similar to a tRNA and interacts with the ribosome via the exit “E” site on the 30S subunit and the peptidyl-transferase center (PTC) of the 50S subunit. EF-P is a translation aspect of an unknown function, therefore It probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.

In molecular biology, VAR1 protein domain, otherwise known as variant protein 1, is a ribosomal protein that forms part of the small ribosomal subunit in yeast mitochondria. Mitochondria possess their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. VAR1 is the only protein in the yeast mitochondrial ribosome to be encoded in the mitochondria - the remaining approximately 80 ribosomal proteins are encoded in the nucleus. VAR1 along with 15S rRNA are necessary for the formation of mature 37S subunits.

Ribosomal L28e protein family is a family of evolutionarily related proteins. Members include 60S ribosomal protein L28.

Yoshito Kaziro was a Japanese biochemical and medical scientist who performed research on the effects and mechanisms of ATP and GTP driven conformational changes in enzymes and intracellular signaling pathways for over 50 years. He is well-known for his research on various signal transduction pathways involving GTP-binding proteins and the mechanism for biotin dependent carboxylation reactions of Coenzyme A (CoA) proteins.

References

  1. Margus, Tõnu; Remm, Maido; Tenson, Tanel (December 2007). "Phylogenetic distribution of translational GTPases in bacteria". BMC Genomics. 8 (1): 15. doi: 10.1186/1471-2164-8-15 . PMC   1780047 . PMID   17214893.
  2. Youngman EM, Green R (February 2007). "Ribosomal translocation: LepA does it backwards". Curr. Biol. 17 (4): R136–9. doi: 10.1016/j.cub.2006.12.029 . PMID   17307049.
  3. March PE, Inouye M (November 1985). "GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G". Proc. Natl. Acad. Sci. U.S.A. 82 (22): 7500–4. Bibcode:1985PNAS...82.7500M. doi: 10.1073/pnas.82.22.7500 . PMC   390844 . PMID   2999765.
  4. 1 2 3 Qin Y, Polacek N, Vesper O, et al. (November 2006). "The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome". Cell. 127 (4): 721–33. doi: 10.1016/j.cell.2006.09.037 . PMID   17110332.
  5. Bauerschmitt, Heike; Funes, Soledad; Herrman, Johannes (June 2008). "The Membrane-bound GTPase Guf1 Promotes Mitochondrial Protein Synthesis under Suboptimal Conditions*". Journal of Biological Chemistry. 234 (25): 17139–17146. doi: 10.1074/jbc.M710037200 . PMID   18442968.
  6. "ENZYME entry: EC 3.6.5.n1" . Retrieved October 21, 2021.
  7. Evans RN, Blaha G, Bailey S, Steitz TA (March 2008). "The structure of LepA, the ribosomal back translocase". Proc. Natl. Acad. Sci. U.S.A. 105 (12): 4673–8. Bibcode:2008PNAS..105.4673E. doi: 10.1073/pnas.0801308105 . PMC   2290774 . PMID   18362332.