EF-Tu

Last updated
Elongation Factor Thermo Unstable
081-EF-Tu-1ttt.jpg
EF-Tu (blue) complexed with tRNA (red) and GTP (yellow) [1]
Identifiers
SymbolEF-Tu
Pfam GTP_EFTU
Pfam clan CL0023
InterPro IPR004541
PROSITE PDOC00273
CATH 1ETU
SCOP2 1ETU / SCOPe / SUPFAM
CDD cd00881
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
EF-Tu
Identifiers
SymbolGTP_EFTU_D2
Pfam PF03144
InterPro IPR004161
CDD cd01342
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Elongation factor Tu domain 3
Identifiers
SymbolGTP_EFTU_D3
Pfam PF03143
InterPro IPR004160
CDD cd01513
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

EF-Tu (elongation factor thermo unstable) is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome. As a reflection of its crucial role in translation, EF-Tu is one of the most abundant and highly conserved proteins in prokaryotes. [2] [3] [4] It is found in eukaryotic mitochondria as TUFM. [5]

Contents

As a family of elongation factors, EF-Tu also includes its eukaryotic and archaeal homolog, the alpha subunit of eEF-1 (EF-1A).

Background

Elongation factors are part of the mechanism that synthesizes new proteins through translation in the ribosome. Transfer RNAs (tRNAs) carry the individual amino acids that become integrated into a protein sequence, and have an anticodon for the specific amino acid that they are charged with. Messenger RNA (mRNA) carries the genetic information that encodes the primary structure of a protein, and contains codons that code for each amino acid. The ribosome creates the protein chain by following the mRNA code and integrating the amino acid of an aminoacyl-tRNA (also known as a charged tRNA) to the growing polypeptide chain. [6] [7]

There are three sites on the ribosome for tRNA binding. These are the aminoacyl/acceptor site (abbreviated A), the peptidyl site (abbreviated P), and the exit site (abbreviated E). The P-site holds the tRNA connected to the polypeptide chain being synthesized, and the A-site is the binding site for a charged tRNA with an anticodon complementary to the mRNA codon associated with the site. After binding of a charged tRNA to the A-site, a peptide bond is formed between the growing polypeptide chain on the P-site tRNA and the amino acid of the A-site tRNA, and the entire polypeptide is transferred from the P-site tRNA to the A-site tRNA. Then, in a process catalyzed by the prokaryotic elongation factor EF-G (historically known as translocase), the coordinated translocation of the tRNAs and mRNA occurs, with the P-site tRNA moving to the E-site, where it dissociates from the ribosome, and the A-site tRNA moves to take its place in the P-site. [6] [7]

Biological functions

The cyclical role of EF-Tu in translation. Structures are from PDBs 1EFT, 1TUI, and 1TTT. EF-Tu cycle.png
The cyclical role of EF-Tu in translation. Structures are from PDBs 1EFT, 1TUI, and 1TTT.

Protein synthesis

EF-Tu participates in the polypeptide elongation process of protein synthesis. In prokaryotes, the primary function of EF-Tu is to transport the correct aa-tRNA to the A-site of the ribosome. As a G-protein, it uses GTP to facilitate its function. Outside of the ribosome, EF-Tu complexed with GTP (EF-Tu • GTP) complexes with aa-tRNA to form a stable EF-Tu • GTP • aa-tRNA ternary complex. [8] EF-Tu • GTP binds all correctly-charged aa-tRNAs with approximately identical affinity, except those charged with initiation residues and selenocysteine. [9] [10] This can be accomplished because although different amino acid residues have varying side-chain properties, the tRNAs associated with those residues have varying structures to compensate for differences in side-chain binding affinities. [11] [12]

The binding of an aa-tRNA to EF-Tu • GTP allows for the ternary complex to be translocated to the A-site of an active ribosome, in which the anticodon of the tRNA binds to the codon of the mRNA. If the correct anticodon binds to the mRNA codon, the ribosome changes configuration and alters the geometry of the GTPase domain of EF-Tu, resulting in the hydrolysis of the GTP associated with the EF-Tu to GDP and Pi. As such, the ribosome functions as a GTPase-activating protein (GAP) for EF-Tu. Upon GTP hydrolysis, the conformation of EF-Tu changes drastically and dissociates from the aa-tRNA and ribosome complex. [4] [13] The aa-tRNA then fully enters the A-site, where its amino acid is brought near the P-site's polypeptide and the ribosome catalyzes the covalent transfer of the polypeptide onto the amino acid. [10]

In the cytoplasm, the deactivated EF-Tu • GDP is acted on by the prokaryotic elongation factor EF-Ts, which causes EF-Tu to release its bound GDP. Upon dissociation of EF-Ts, EF-Tu is able to complex with a GTP due to the 5– to 10–fold higher concentration of GTP than GDP in the cytoplasm, resulting in reactivated EF-Tu • GTP, which can then associate with another aa-tRNA. [8] [13]

Maintaining translational accuracy

EF-Tu contributes to translational accuracy in three ways. In translation, a fundamental problem is that near-cognate anticodons have similar binding affinity to a codon as cognate anticodons, such that anticodon-codon binding in the ribosome alone is not sufficient to maintain high translational fidelity. This is addressed by the ribosome not activating the GTPase activity of EF-Tu if the tRNA in the ribosome's A-site does not match the mRNA codon, thus preferentially increasing the likelihood for the incorrect tRNA to leave the ribosome. [14] Additionally, regardless of tRNA matching, EF-Tu also induces a delay after freeing itself from the aa-tRNA, before the aa-tRNA fully enters the A-site (a process called accommodation). This delay period is a second opportunity for incorrectly charged aa-tRNAs to move out of the A-site before the incorrect amino acid is irreversibly added to the polypeptide chain. [15] [16] A third mechanism is the less well understood function of EF-Tu to crudely check aa-tRNA associations and reject complexes where the amino acid is not bound to the correct tRNA coding for it. [11]

Other functions

EF-Tu has been found in large quantities in the cytoskeletons of bacteria, co-localizing underneath the cell membrane with MreB, a cytoskeletal element that maintains cell shape. [17] [18] Defects in EF-Tu have been shown to result in defects in bacterial morphology. [19] Additionally, EF-Tu has displayed some chaperone-like characteristics, with some experimental evidence suggesting that it promotes the refolding of a number of denatured proteins in vitro. [20] [21] EF-Tu has been found to moonlight on the cell surface of the pathogenic bacteria Staphylococcus aureus , Mycoplasma pneumoniae , and Mycoplasma hyopneumoniae , where EF-Tu is processed and can bind to a range of host molecules. [22] In Bacillus cereus , EF-Tu also moonlights on the surface, where it acts as an environmental sensor and binds to substance P. [23]

Structure

EF-Tu bound to GDP (yellow) and GDPNP (red), a GTP-like molecule. The GTPase domain (domain I) of EF-Tu is depicted in dark blue, while the oligonucleotide-binding domains II and III are depicted in light blue. Structures are from PDBs 1EFT and 1TUI, for GDP- and GDPNP-bound EF-Tu, respectively. EF-Tu conformations.png
EF-Tu bound to GDP (yellow) and GDPNP (red), a GTP-like molecule. The GTPase domain (domain I) of EF-Tu is depicted in dark blue, while the oligonucleotide-binding domains II and III are depicted in light blue. Structures are from PDBs 1EFT and 1TUI, for GDP- and GDPNP-bound EF-Tu, respectively.

EF-Tu is a monomeric protein with molecular weight around 43 kDa in Escherichia coli . [24] [25] [26] The protein consists of three structural domains: a GTP-binding domain and two oligonucleotide-binding domains, often referred to as domain 2 and domain 3. The N-terminal domain I of EF-Tu is the GTP-binding domain. It consists of a six beta-strand core flanked by six alpha-helices. [8] Domains II and III of EF-Tu, the oligonucleotide-binding domains, both adopt beta-barrel structures. [27] [28]

The GTP-binding domain I undergoes a dramatic conformational change upon GTP hydrolysis to GDP, allowing EF-Tu to dissociate from aa-tRNA and leave the ribosome. [29] Reactivation of EF-Tu is achieved by GTP binding in the cytoplasm, which leads to a significant conformational change that reactivates the tRNA-binding site of EF-Tu. In particular, GTP binding to EF-Tu results in a ~90° rotation of domain I relative to domains II and III, exposing the residues of the tRNA-binding active site. [30]

Domain 2 adopts a beta-barrel structure, and is involved in binding to charged tRNA. [31] This domain is structurally related to the C-terminal domain of EF2, to which it displays weak sequence similarity. This domain is also found in other proteins such as translation initiation factor IF-2 and tetracycline-resistance proteins. Domain 3 represents the C-terminal domain, which adopts a beta-barrel structure, and is involved in binding to both charged tRNA and to EF1B (or EF-Ts). [32]

Evolution

The GTP-binding domain is conserved in both EF-1alpha/EF-Tu and also in EF-2/EF-G and thus seems typical for GTP-dependent proteins which bind non-initiator tRNAs to the ribosome. The GTP-binding translation factor family also includes the eukaryotic peptide chain release factor GTP-binding subunits [33] and prokaryotic peptide chain release factor 3 (RF-3); [34] the prokaryotic GTP-binding protein lepA and its homologue in yeast (GUF1) and Caenorhabditis elegans (ZK1236.1); yeast HBS1; [35] rat Eef1a1 (formerly "statin S1"); [36] and the prokaryotic selenocysteine-specific elongation factor selB. [37]

Disease relevance

Along with the ribosome, EF-Tu is one of the most important targets for antibiotic-mediated inhibition of translation. [8] Antibiotics targeting EF-Tu can be categorized into one of two groups, depending on the mechanism of action, and one of four structural families. The first group includes the antibiotics pulvomycin and GE2270A, and inhibits the formation of the ternary complex. [38] The second group includes the antibiotics kirromycin and enacyloxin, and prevents the release of EF-Tu from the ribosome after GTP hydrolysis. [39] [40] [41]

See also

Related Research Articles

<span class="mw-page-title-main">Translation (biology)</span> Cellular process of protein synthesis

In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.

<span class="mw-page-title-main">Transfer RNA</span> RNA that facilitates the addition of amino acids to a new protein

Transfer RNA is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length, that serves as the physical link between the mRNA and the amino acid sequence of proteins. Transfer RNA (tRNA) does this by carrying an amino acid to the protein-synthesizing machinery of a cell called the ribosome. Complementation of a 3-nucleotide codon in a messenger RNA (mRNA) by a 3-nucleotide anticodon of the tRNA results in protein synthesis based on the mRNA code. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.

<span class="mw-page-title-main">Aminoacyl tRNA synthetase</span> Class of enzymes

An aminoacyl-tRNA synthetase, also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA. In humans, the 20 different types of aa-tRNA are made by the 20 different aminoacyl-tRNA synthetases, one for each amino acid of the genetic code.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

<span class="mw-page-title-main">Aminoacyl-tRNA</span> Molecule that delivers the amino acid to the ribosome during translation

Aminoacyl-tRNA is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polypeptide chain that is being produced during translation.

In molecular biology, initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis.

A release factor is a protein that allows for the termination of translation by recognizing the termination codon or stop codon in an mRNA sequence. They are named so because they release new peptides from the ribosome.

Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. Several initiation factors form a complex with the small 40S ribosomal subunit and Met-tRNAiMet called the 43S preinitiation complex. Additional factors of the eIF4F complex recruit the 43S PIC to the five-prime cap structure of the mRNA, from which the 43S particle scans 5'-->3' along the mRNA to reach an AUG start codon. Recognition of the start codon by the Met-tRNAiMet promotes gated phosphate and eIF1 release to form the 48S preinitiation complex, followed by large 60S ribosomal subunit recruitment to form the 80S ribosome. There exist many more eukaryotic initiation factors than prokaryotic initiation factors, reflecting the greater biological complexity of eukaryotic translation. There are at least twelve eukaryotic initiation factors, composed of many more polypeptides, and these are described below.

A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide translation.

<span class="mw-page-title-main">Eukaryotic translation termination factor 1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation termination factor1 (eRF1), also referred to as TB3-1 or SUP45L1, is a protein that is encoded by the ERF1 gene. In Eukaryotes, eRF1 is an essential protein involved in stop codon recognition in translation, termination of translation, and nonsense mediated mRNA decay via the SURF complex.

Elongation factor 4 (EF-4) is an elongation factor that is thought to back-translocate on the ribosome during the translation of RNA to proteins. It is found near-universally in bacteria and in eukaryotic endosymbiotic organelles including the mitochondria and the plastid. Responsible for proofreading during protein synthesis, EF-4 is a recent addition to the nomenclature of bacterial elongation factors.

<span class="mw-page-title-main">Prokaryotic small ribosomal subunit</span> Smaller subunit of the 70S ribosome found in prokaryote cells

The prokaryotic small ribosomal subunit, or 30S subunit, is the smaller subunit of the 70S ribosome found in prokaryotes. It is a complex of the 16S ribosomal RNA (rRNA) and 19 proteins. This complex is implicated in the binding of transfer RNA to messenger RNA (mRNA). The small subunit is responsible for the binding and the reading of the mRNA during translation. The small subunit, both the rRNA and its proteins, complexes with the large 50S subunit to form the 70S prokaryotic ribosome in prokaryotic cells. This 70S ribosome is then used to translate mRNA into proteins.

<span class="mw-page-title-main">EF-G</span> Prokaryotic elongation factor

EF-G is a prokaryotic elongation factor involved in mRNA translation. As a GTPase, EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome.

EF-Ts is one of the prokaryotic elongation factors. It is found in human mitochondria as TSFM. It is similar to eukaryotic EF-1B.

Translational regulation refers to the control of the levels of protein synthesized from its mRNA. This regulation is vastly important to the cellular response to stressors, growth cues, and differentiation. In comparison to transcriptional regulation, it results in much more immediate cellular adjustment through direct regulation of protein concentration. The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon, but can also involve modulation of peptide elongation, termination of protein synthesis, or ribosome biogenesis. While these general concepts are widely conserved, some of the finer details in this sort of regulation have been proven to differ between prokaryotic and eukaryotic organisms.

The P-site is the second binding site for tRNA in the ribosome. The other two sites are the A-site (aminoacyl), which is the first binding site in the ribosome, and the E-site (exit), the third. During protein translation, the P-site holds the tRNA which is linked to the growing polypeptide chain. When a stop codon is reached, the peptidyl-tRNA bond of the tRNA located in the P-site is cleaved releasing the newly synthesized protein. During the translocation step of the elongation phase, the mRNA is advanced by one codon, coupled to movement of the tRNAs from the ribosomal A to P and P to E sites, catalyzed by elongation factor EF-G.

<span class="mw-page-title-main">Elongation factor P</span>

EF-P is an essential protein that in bacteria stimulates the formation of the first peptide bonds in protein synthesis. Studies show that EF-P prevents ribosomes from stalling during the synthesis of proteins containing consecutive prolines. EF-P binds to a site located between the binding site for the peptidyl tRNA and the exiting tRNA. It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. The EF-P protein shape and size is very similar to a tRNA and interacts with the ribosome via the exit “E” site on the 30S subunit and the peptidyl-transferase center (PTC) of the 50S subunit. EF-P is a translation aspect of an unknown function, therefore It probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.

In molecular biology, VAR1 protein domain, otherwise known as variant protein 1, is a ribosomal protein that forms part of the small ribosomal subunit in yeast mitochondria. Mitochondria possess their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. VAR1 is the only protein in the yeast mitochondrial ribosome to be encoded in the mitochondria - the remaining approximately 80 ribosomal proteins are encoded in the nucleus. VAR1 along with 15S rRNA are necessary for the formation of mature 37S subunits.

Ribosomal L28e protein family is a family of evolutionarily related proteins. Members include 60S ribosomal protein L28.

References

  1. PDB Molecule of the Month EF-Tu
  2. Weijland A, Harmark K, Cool RH, Anborgh PH, Parmeggiani A (March 1992). "Elongation factor Tu: a molecular switch in protein biosynthesis". Molecular Microbiology. 6 (6): 683–8. doi: 10.1111/j.1365-2958.1992.tb01516.x . PMID   1573997.
  3. "TIGR00485: EF-Tu". National Center for Biotechnology Information. March 3, 2017.
  4. 1 2 Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CM, Nierhaus KH (February 2014). "EF-G and EF4: translocation and back-translocation on the bacterial ribosome". Nature Reviews. Microbiology. 12 (2): 89–100. doi:10.1038/nrmicro3176. PMID   24362468. S2CID   27196901.
  5. Ling M, Merante F, Chen HS, Duff C, Duncan AM, Robinson BH (Nov 1997). "The human mitochondrial elongation factor tu (EF-Tu) gene: cDNA sequence, genomic localization, genomic structure, and identification of a pseudogene". Gene. 197 (1–2): 325–36. doi:10.1016/S0378-1119(97)00279-5. PMID   9332382.
  6. 1 2 Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU (March 2005). "Initiation of protein synthesis in bacteria". Microbiology and Molecular Biology Reviews. 69 (1): 101–23. doi:10.1128/MMBR.69.1.101-123.2005. PMC   1082788 . PMID   15755955.
  7. 1 2 Ramakrishnan V (February 2002). "Ribosome structure and the mechanism of translation". Cell. 108 (4): 557–72. doi: 10.1016/s0092-8674(02)00619-0 . PMID   11909526. S2CID   2078757.
  8. 1 2 3 4 Krab IM, Parmeggiani A (2002-01-01). Mechanisms of EF-Tu, a pioneer GTPase. Vol. 71. pp. 513–51. doi:10.1016/S0079-6603(02)71050-7. ISBN   9780125400718. PMID   12102560.{{cite book}}: |journal= ignored (help)
  9. "Translation elongation factor EFTu/EF1A, bacterial/organelle (IPR004541)". InterPro.
  10. 1 2 Diwan, Joyce (2008). "Translation: Protein Synthesis". Rensselaer Polytechnic Institute. Archived from the original on 2017-06-30. Retrieved 2017-03-09.
  11. 1 2 LaRiviere FJ, Wolfson AD, Uhlenbeck OC (October 2001). "Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation". Science. 294 (5540): 165–8. Bibcode:2001Sci...294..165L. doi:10.1126/science.1064242. PMID   11588263. S2CID   26192336.
  12. Louie A, Ribeiro NS, Reid BR, Jurnak F (April 1984). "Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP". The Journal of Biological Chemistry. 259 (8): 5010–6. doi: 10.1016/S0021-9258(17)42947-4 . PMID   6370998.
  13. 1 2 Clark BF, Nyborg J (February 1997). "The ternary complex of EF-Tu and its role in protein biosynthesis". Current Opinion in Structural Biology. 7 (1): 110–6. doi:10.1016/s0959-440x(97)80014-0. PMID   9032056.
  14. Nilsson J, Nissen P (June 2005). "Elongation factors on the ribosome". Current Opinion in Structural Biology. 15 (3): 349–54. doi:10.1016/j.sbi.2005.05.004. PMID   15922593.
  15. Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY (June 2010). "Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways". RNA. 16 (6): 1196–204. doi:10.1261/rna.2035410. PMC   2874171 . PMID   20427512.
  16. Noel JK, Whitford PC (October 2016). "How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome". Nature Communications. 7: 13314. Bibcode:2016NatCo...713314N. doi:10.1038/ncomms13314. PMC   5095583 . PMID   27796304.
  17. Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL (February 2010). "Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein". Proceedings of the National Academy of Sciences of the United States of America. 107 (7): 3163–8. Bibcode:2010PNAS..107.3163D. doi: 10.1073/pnas.0911979107 . PMC   2840354 . PMID   20133608.
  18. Mayer F (2003-01-01). "Cytoskeletons in prokaryotes". Cell Biology International. 27 (5): 429–38. doi:10.1016/s1065-6995(03)00035-0. PMID   12758091. S2CID   40897586.
  19. Mayer F (2006-01-01). "Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy". Journal of Molecular Microbiology and Biotechnology. 11 (3–5): 228–43. doi:10.1159/000094057. PMID   16983198. S2CID   23701662.
  20. Richarme G (November 1998). "Protein-disulfide isomerase activity of elongation factor EF-Tu". Biochemical and Biophysical Research Communications. 252 (1): 156–61. doi:10.1006/bbrc.1998.9591. PMID   9813162.
  21. Kudlicki W, Coffman A, Kramer G, Hardesty B (December 1997). "Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing". The Journal of Biological Chemistry. 272 (51): 32206–10. doi: 10.1074/jbc.272.51.32206 . PMID   9405422.
  22. Widjaja, Michael; Harvey, Kate Louise; Hagemann, Lisa; Berry, Iain James; Jarocki, Veronica Maria; Raymond, Benjamin Bernard Armando; Tacchi, Jessica Leigh; Gründel, Anne; Steele, Joel Ricky; Padula, Matthew Paul; Charles, Ian George; Dumke, Roger; Djordjevic, Steven Philip (2017-09-11). "Elongation factor Tu is a multifunctional and processed moonlighting protein". Scientific Reports. 7 (1): 11227. doi:10.1038/s41598-017-10644-z. ISSN   2045-2322.
  23. N’Diaye, Awa R.; Borrel, Valerie; Racine, Pierre-Jean; Clamens, Thomas; Depayras, Segolene; Maillot, Olivier; Schaack, Beatrice; Chevalier, Sylvie; Lesouhaitier, Olivier; Feuilloley, Marc G. J. (2019-02-04). "Mechanism of action of the moonlighting protein EfTu as a Substance P sensor in Bacillus cereus". Scientific Reports. 9 (1): 1304. doi:10.1038/s41598-018-37506-6. ISSN   2045-2322.
  24. Caldas TD, El Yaagoubi A, Kohiyama M, Richarme G (October 1998). "Purification of elongation factors EF-Tu and EF-G from Escherichia coli by covalent chromatography on thiol-sepharose". Protein Expression and Purification. 14 (1): 65–70. doi:10.1006/prep.1998.0922. PMID   9758752.
  25. Wiborg O, Andersen C, Knudsen CR, Clark BF, Nyborg J (August 1996). "Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA". The Journal of Biological Chemistry. 271 (34): 20406–11. doi: 10.1074/jbc.271.34.20406 . PMID   8702777.
  26. Wurmbach P, Nierhaus KH (1979-01-01). "Isolation of the protein synthesis elongation factors EF-Tu, EF-Ts, and EF-G from Escherichia coli". Nucleic Acids and Protein Synthesis Part H. Methods in Enzymology. Vol. 60. pp.  593–606. doi:10.1016/s0076-6879(79)60056-3. ISBN   9780121819606. PMID   379535.
  27. Wang Y, Jiang Y, Meyering-Voss M, Sprinzl M, Sigler PB (August 1997). "Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus". Nature Structural Biology. 4 (8): 650–6. doi:10.1038/nsb0897-650. PMID   9253415. S2CID   10644042.
  28. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (December 1995). "Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog". Science. 270 (5241): 1464–72. doi:10.1126/science.270.5241.1464. PMID   7491491. S2CID   24817616.
  29. Möller W, Schipper A, Amons R (September 1987). "A conserved amino acid sequence around Arg-68 of Artemia elongation factor 1 alpha is involved in the binding of guanine nucleotides and aminoacyl transfer RNAs". Biochimie. 69 (9): 983–9. doi:10.1016/0300-9084(87)90232-x. PMID   3126836.
  30. Kjeldgaard M, Nissen P, Thirup S, Nyborg J (September 1993). "The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation". Structure. 1 (1): 35–50. doi: 10.1016/0969-2126(93)90007-4 . PMID   8069622.
  31. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (December 1995). "Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog". Science. 270 (5241): 1464–72. doi:10.1126/science.270.5241.1464. PMID   7491491. S2CID   24817616.
  32. Wang Y, Jiang Y, Meyering-Voss M, Sprinzl M, Sigler PB (August 1997). "Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus". Nat. Struct. Biol. 4 (8): 650–6. doi:10.1038/nsb0897-650. PMID   9253415. S2CID   10644042.
  33. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (September 1995). "The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae". EMBO J. 14 (17): 4365–73. doi:10.1002/j.1460-2075.1995.tb00111.x. PMC   394521 . PMID   7556078.
  34. Grentzmann G, Brechemier-Baey D, Heurgué-Hamard V, Buckingham RH (May 1995). "Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals". J. Biol. Chem. 270 (18): 10595–600. doi: 10.1074/jbc.270.18.10595 . PMID   7737996.
  35. Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (October 1992). "The translation machinery and 70 kd heat shock protein cooperate in protein synthesis". Cell. 71 (1): 97–105. doi:10.1016/0092-8674(92)90269-I. PMID   1394434. S2CID   7417370.
  36. Ann DK, Moutsatsos IK, Nakamura T, Lin HH, Mao PL, Lee MJ, Chin S, Liem RK, Wang E (June 1991). "Isolation and characterization of the rat chromosomal gene for a polypeptide (pS1) antigenically related to statin". J. Biol. Chem. 266 (16): 10429–37. doi: 10.1016/S0021-9258(18)99243-4 . PMID   1709933.
  37. Forchhammer K, Leinfelder W, Bock A (November 1989). "Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein". Nature. 342 (6248): 453–6. Bibcode:1989Natur.342..453F. doi:10.1038/342453a0. PMID   2531290. S2CID   4251625.
  38. Selva E, Beretta G, Montanini N, Saddler GS, Gastaldo L, Ferrari P, Lorenzetti R, Landini P, Ripamonti F, Goldstein BP (July 1991). "Antibiotic GE2270 a: a novel inhibitor of bacterial protein synthesis. I. Isolation and characterization". The Journal of Antibiotics. 44 (7): 693–701. doi: 10.7164/antibiotics.44.693 . PMID   1908853.
  39. Hogg T, Mesters JR, Hilgenfeld R (February 2002). "Inhibitory mechanisms of antibiotics targeting elongation factor Tu". Current Protein & Peptide Science. 3 (1): 121–31. doi:10.2174/1389203023380855. PMID   12370016.
  40. Andersen GR, Nissen P, Nyborg J (August 2003). "Elongation factors in protein biosynthesis". Trends in Biochemical Sciences. 28 (8): 434–41. doi:10.1016/S0968-0004(03)00162-2. PMID   12932732.
  41. Parmeggiani A, Nissen P (August 2006). "Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action". FEBS Letters. 580 (19): 4576–81. Bibcode:2006FEBSL.580.4576P. doi: 10.1016/j.febslet.2006.07.039 . PMID   16876786. S2CID   20811259.
This article incorporates text from the public domain Pfam and InterPro: