Wilson disease protein

Last updated
ATP7B
PBB Protein ATP7B image.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ATP7B , PWD, WC1, WD, WND, ATPase copper transporting beta
External IDs OMIM: 606882 MGI: 103297 HomoloGene: 20063 GeneCards: ATP7B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000053
NM_001005918
NM_001243182
NM_001330578
NM_001330579

Contents

NM_007511

RefSeq (protein)

NP_031537

Location (UCSC) Chr 13: 51.93 – 52.01 Mb Chr 8: 21.99 – 22.06 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Physiological pathway of copper in human body. Cu = copper, CP = ceruloplasmin, ATP7B protein is in Hepatocyte. Copper metabolism.png
Physiological pathway of copper in human body. Cu = copper, CP = ceruloplasmin, ATP7B protein is in Hepatocyte.
Simple model of structural feature of ATP7B protein. Cu=Copper binding motif Structure of ATP7B.jpg
Simple model of structural feature of ATP7B protein. Cu=Copper binding motif

Wilson disease protein (WND), also known as ATP7B protein, is a copper-transporting P-type ATPase which is encoded by the ATP7B gene. The ATP7B protein is located in the trans-Golgi network of the liver and brain and balances the copper level in the body by excreting excess copper into bile and plasma. Genetic disorder of the ATP7B gene may cause Wilson's disease, a disease in which copper accumulates in tissues, leading to neurological or psychiatric issues and liver diseases.

Gene

Wilson disease protein is associated with ATP7B gene, approximately 80 Kb, located on human chromosome 13 and consists of 21 exons. The mRNA transcribed by ATP7B gene has a size of 7.5 Kb, and which encodes a protein of 1465 amino acids. [5]

The gene is a member of the P-type cation transport ATPase family and encodes a protein with several membrane-spanning domains, an ATPase consensus sequence, a hinge domain, a phosphorylation site, and at least two putative copper-binding sites. This protein functions as a monomer, exporting copper out of the cells, such as the efflux of hepatic copper into the bile. Alternate transcriptional splice variants, encoding different isoforms with distinct cellular localizations, have been characterized. [6] Wilson's disease is caused by various mutations. One of the common mutations is single base pair mutation, H1069Q. [5]

Structure

ATP7B protein is a copper-transporting P-type ATPase, synthesized as a membrane protein of 165 KDa in human hepatoma cell line, [5] and which is 57% homologous to Menkes disease-associated protein ATP7A. [7]

ATP7B consists of several domains:

The CPC motif (Cys-Pro-Cys) in transmembrane segment 6 characterizes the protein as a heavy metal transporting ATPase. [8]

The copper binding motif also shows a high affinity to other transition metal ions such as zinc Zn(II), cadmium Cd(II), gold Au(III), and mercury Hg(II). However, copper is able to decrease the zinc binding affinity at low concentration and increase copper binding affinity dramatically with increasing concentration to ensure a strong binding between the motif and copper. [8]

As a P-type ATPases, ATP7B undergoes auto-phosphorylation of a key conserved aspartic acid (D) residue in the DKTGT motif. The ATP binding to the protein initiates the reaction and copper binds to the transmembrane region. Then phosphorylation occurs at the aspartic acid residue in the DKTGT motif with Cu release. Then dephosphorylation of the aspartic acid residue recovers the protein to ready for the next transport. [9]

Function

Most of ATP7B protein is located in the trans-Golgi network (TGN) of hepatocytes, which is different from its homologous protein ATP7A. [10] Small amount of ATP7B is located in the brain. [11] As a copper-transporting protein, one major function is delivering copper to copper dependent enzymes in Golgi apparatus (e.g. holo-ceruloplasmin (CPN)). [10]

In the human body, the liver plays an important role in copper regulation including removal of extra copper. [10] ATP7B participates in the physiological pathway in the copper removal process in two ways: secreting copper into plasma and excreting copper into bile. [7]

Interactions

ATOX1

ATP7B receives copper from cytosolic protein antioxidant 1 copper chaperone (ATOX1). [5] This protein targets ATP7B directly in liver in order to transport copper. ATOX1 transfers copper from cytosol to the metal binding domain of ATP7B which control the catalytic activity of ATP7B. [12]

Several mutations in ATOX1 can block the copper pathways and cause Wilson disease. [12]

GLRX

ATP7B interacts with glutaredoxin-1 (GLRX). Subsequent transport is promoted through the reduction of intramolecular disulfide bonds by GLRX catalysis. [13]

Associations with Wilson's disease

Wilson disease happens when accumulation of copper inside the liver causes mitochondrial damage and cell destruction and shows symptoms of hepatic disease. Then, the loss of excretion of copper in bile leads to an increasing concentration of copper level in urine and causes kidney problems. Therefore, symptoms of Wilson's disease could be various including kidney disease and neurological disease. [12] The major cause is the malfunction of ATP7B [12] by single base pair mutations, deletions, frame-shifts, splice errors in ATP7B gene. [5]

See also

Related Research Articles

Protein kinase enzyme that adds phosphate groups to other proteins

A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase, the great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets and the other are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.

Wilsons disease Genetic multisystem copper-transport disease

Wilson's disease is a genetic disorder in which excess copper builds up in the body. Symptoms are typically related to the brain and liver. Liver-related symptoms include vomiting, weakness, fluid build up in the abdomen, swelling of the legs, yellowish skin and itchiness. Brain-related symptoms include tremors, muscle stiffness, trouble speaking, personality changes, anxiety, and psychosis.

AAA proteins

AAA proteins or ATPases Associated with diverse cellular Activities are a protein family sharing a common conserved module of approximately 230 amino acid residues. This is a large, functionally diverse protein family belonging to the AAA+ protein superfamily of ring-shaped P-loop NTPases, which exert their activity through the energy-dependent remodeling or translocation of macromolecules.

Menkes disease X-linked recessive copper-transport disorder

Menkes disease (MNK), also known as Menkes syndrome, is an X-linked recessive disorder caused by mutations in genes coding for the copper-transport protein ATP7A, leading to copper deficiency. Characteristic findings include kinky hair, growth failure, and nervous system deterioration. Like all X-linked recessive conditions, Menkes disease is more common in males than in females. The disorder was first described by John Hans Menkes in 1962.

ATP-binding cassette transporter

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans.

ATP7A

ATP7A, also known as Menkes' protein (MNK), is a copper-transporting P-type ATPase which uses the energy arising from ATP hydrolysis to transport Cu(I) across cell membranes. The ATP7A protein is a transmembrane protein and is expressed in the intestine and all tissues except liver. In the intestine, ATP7A regulates Cu(I) absorption in the human body by transporting Cu(I) from the small intestine into the blood. In other tissues, ATP7A shuttles between the Golgi apparatus and the cell membrane to maintain proper Cu(I) concentrations in the cell and provides certain enzymes with Cu(I). The X-linked, inherited, lethal genetic disorder of the ATP7A gene causes Menkes disease, a copper deficiency resulting in early childhood death.

V-ATPase Family of transport protein complexes

Vacuolar-type ATPase (V-ATPase) is a highly conserved evolutionarily ancient enzyme with remarkably diverse functions in eukaryotic organisms. V-ATPases acidify a wide array of intracellular organelles and pump protons across the plasma membranes of numerous cell types. V-ATPases couple the energy of ATP hydrolysis to proton transport across intracellular and plasma membranes of eukaryotic cells. It is generally seen as the polar opposite of ATP synthase because ATP synthase is a proton channel that uses the energy from a proton gradient to produce ATP. V-ATPase however, is a proton pump that uses the energy from ATP hydrolysis to produce a proton gradient.

Cu2+-exporting ATPase (EC 3.6.3.4) is an enzyme with systematic name ATP phosphohydrolase (Cu2+-exporting). This enzyme catalyses the following chemical reaction

ABCB4

The ATP-binding cassette 4 gene encodes the Multidrug resistance protein 3. ABCB4 is associated with progressive familial intrahepatic cholestasis type 3.

BRAF (gene)

BRAF is a human gene that encodes a protein called B-Raf. The gene is also referred to as proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B, while the protein is more formally known as serine/threonine-protein kinase B-Raf.

P-type ATPase

The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E1 and E2. P-type ATPases fall under the P-type ATPase (P-ATPase) Superfamily (TC# 3.A.3) which, as of early 2016, includes 20 different protein families.

Valosin-containing protein

Valosin-containing protein (VCP) or transitional endoplasmic reticulum ATPase also known as or p97 in mammals and CDC48 in S. cerevisiae, is an enzyme that in humans is encoded by the VCP gene. The TER ATPase is an ATPase enzyme present in all eukaryotes and archaebacteria. Its main function is to segregate protein molecules from large cellular structures such as protein assemblies, organelle membranes and chromatin, and thus facilitate the degradation of released polypeptides by the multi-subunit protease proteasome.

ATP2B4

Plasma membrane calcium-transporting ATPase 4 is an enzyme that in humans is encoded by the ATP2B4 gene.

ATP2C1

Calcium-transporting ATPase type 2C member 1 is an enzyme that in humans is encoded by the ATP2C1 gene.

ATP2A1

Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 is an enzyme that in humans is encoded by the ATP2A1 gene.

ATP5F1A

ATP synthase F1 subunit alpha, mitochondrial is an enzyme that in humans is encoded by the ATP5F1A gene.

ATOX1

ATOX1 is a copper metallochaperone protein that is encoded by the ATOX1 gene in humans. In mammals, ATOX1 plays a key role in copper homeostasis as it delivers copper from the cytosol to transporters ATP7A and ATP7B. Homologous proteins are found in a wide variety of eukaryotes, including Saccharomyces cerevisiae as ATX1, and all contain a conserved metal binding domain.

WNK4

Serine/threonine protein kinase WNK4 also known as WNK lysine deficient protein kinase 4 or WNK4, is an enzyme that in humans is encoded by the WNK4 gene. Missense mutations cause a genetic form of pseudohypoaldosteronism type 2, also called Gordon syndrome.

ATP5D

ATP synthase subunit delta, mitochondrial, also known as ATP synthase F1 subunit delta or F-ATPase delta subunit is an enzyme that in humans is encoded by the ATP5F1D gene. This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation.

MEDNIK syndrome(OMIM#609313), also known as "syndrome de Kamouraska", is a genetic disorder that is caused by mutations to the AP1S1 gene. Transmission of the disease is believed to be autosomal recessive. Symptoms of the syndrome are intellectual disability, enteropathy, deafness, neuropathy, ichthyosis, and keratoderma (MEDNIK). The disorder was discovered by Dr. Patrick Cossette and his research team from the Université de Montréal. MEDNIK syndrome was initially reported in a few French-Canadian families near Quebec who all shared common ancestors.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123191 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000006567 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 5 6 7 8 9 10 Terada K, Schilsky ML, Miura N, Sugiyama T (Oct 1998). "ATP7B (WND) protein". The International Journal of Biochemistry & Cell Biology. 30 (10): 1063–7. doi:10.1016/S1357-2725(98)00073-9. PMID   9785470.
  6. "Entrez Gene: ATP7B ATPase, Cu++ transporting, beta polypeptide".
  7. 1 2 Harris ED (2000). "Cellular copper transport and metabolism". Annual Review of Nutrition. 20: 291–310. doi:10.1146/annurev.nutr.20.1.291. PMID   10940336.
  8. 1 2 Bertini I, Gray H, Stiefel E, Valentine J (2006). Biological inorganic chemistry:structure and reactivity. Sausalito, CA: University Science Books. ISBN   1-891389-43-2.
  9. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (Aug 2010). "Cellular copper distribution: a mechanistic systems biology approach". Cellular and Molecular Life Sciences. 67 (15): 2563–89. doi:10.1007/s00018-010-0330-x. PMID   20333435.
  10. 1 2 3 Lutsenko S, LeShane ES, Shinde U (Jul 2007). "Biochemical basis of regulation of human copper-transporting ATPases". Archives of Biochemistry and Biophysics. 463 (2): 134–48. doi:10.1016/j.abb.2007.04.013. PMC   2025638 . PMID   17562324.
  11. Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G (April 2010). "Copper-related diseases: From chemistry to molecular pathology". Coordination Chemistry Reviews. 254 (7–8): 876–889. doi:10.1016/j.ccr.2009.12.018.
  12. 1 2 3 4 Cox DW, Moore SD (Oct 2002). "Copper transporting P-type ATPases and human disease". Journal of Bioenergetics and Biomembranes. 34 (5): 333–8. doi:10.1023/A:1021293818125. PMID   12539960.
  13. Lim CM, Cater MA, Mercer JF, La Fontaine S (Sep 2006). "Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases" (PDF). Biochem. Biophys. Res. Commun. 348 (2): 428–36. doi:10.1016/j.bbrc.2006.07.067. hdl: 10536/DRO/DU:30003772 . PMID   16884690.

Further reading