RhoC

Last updated
RHOC
Protein RHOC PDB 1a2b.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RHOC , ARH9, ARHC, H9, RHOH9, RhoC, ras homolog family member C
External IDs OMIM: 165380 MGI: 106028 HomoloGene: 90945 GeneCards: RHOC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_175744
NM_001042678
NM_001042679

NM_001291859
NM_007484

RefSeq (protein)

NP_001036143
NP_001036144
NP_786886

NP_001278788
NP_031510

Location (UCSC) Chr 1: 112.7 – 112.71 Mb Chr 3: 104.7 – 104.7 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

RhoC (Ras homolog gene family, member C) is a small (~21 kDa) signaling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. [5] It is encoded by the gene RHOC. [6]

Contents

Mechanism and function

It is prenylated at its C-terminus, and localizes to the cytoplasm and plasma membrane. It is thought to be important in cell locomotion. It cycles between inactive GDP-bound and active GTP-bound states and function as molecular switches in signal transduction cascades. Rho proteins promote reorganization of the actin cytoskeleton and regulate cell shape and motility. RhoC can activate formins such as mDia1 and FMNL2 to remodel the cytoskeleton. [7] [8] [9]

Overexpression of RhoC is associated with cell proliferation and causing tumors to become malignant. [10] It causes degradation and reconstruction of the Extracellular Matrix (ECM) which helps cells escape the tissue they are currently in. It enhances cell motility giving it the ability to become invasive. [11] It has been found to have a direct relationship to advanced tumor stage and metastasis, with increases in stage being related to increases in RhoC expression. [12] RhoC-deficient mice can still develop tumors but these fail to metastasize, arguing that RhoC is essential for metastasis. [13] It has also been found to enhance the creation of angiogenic factors such as VEGF, which is necessary for a tumor to become malignant. [12] [14] In a study by Vega, [15] RhoC was knocked out which resulted in cells spreading out wide in all directions. When RhoC was disabled, the cell's abilities to move in a specific direction and migrate was impaired. It also reduced the cell's speed of movement, because it was difficult, and sometimes impossible, to polarize the cell.

Associated Signaling Pathways

RhoC expression has been associated with several signaling pathways and effectors. Here is a list of the ones found so far:

Types of Cancer RhoC has been studied in

RhoC has been found to be overexpressed in:

Potential Therapies

RhoC small interfering RNA (siRNA) have been used in studies to successfully inhibit proliferation of some invasive cancers [16] [23] RhoC can be used as a biomarker for judging the metastatic potential of tumors [21] [24] One study used "recombinant adenovirus mediated RhoC shRNA in tandem linked expression" to successfully inhibit RhoC [23] It has been found that RhoC expression is not important for embryogenesis but it is only important for metastasis, which would make it a good target for treatments. [14] A RhoC targeted therapy (RV001 by RhoVac) is currently tested in prostate cancer in an ongoing clinical phase 2b program in the US and Europe. Results are expected mid 2022 (Reference: https://clinicaltrials.gov/ct2/show/NCT04114825)

Related Research Articles

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

<span class="mw-page-title-main">CDC42</span> Protein-coding gene in the species Homo sapiens

Cell division control protein 42 homolog is a protein that in humans is encoded by the CDC42 gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in S. cerevisiae (yeast) as a mediator of cell division, and is now known to influence a variety of signaling events and cellular processes in a variety of organisms from yeast to mammals.

<span class="mw-page-title-main">T-cadherin</span> GPI-anchored signaling protein

T-cadherin, also known as cadherin 13, H-cadherin (heart), and CDH13, is a unique member of the cadherin superfamily of proteins because it lacks the transmembrane and cytoplasmic domains common to all other cadherins and is instead anchored to the cell's plasma membrane by the GPI anchor.

<span class="mw-page-title-main">CDKN1B</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase inhibitor 1B (p27Kip1) is an enzyme inhibitor that in humans is encoded by the CDKN1B gene. It encodes a protein which belongs to the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitor proteins. The encoded protein binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls the cell cycle progression at G1. It is often referred to as a cell cycle inhibitor protein because its major function is to stop or slow down the cell division cycle.

<span class="mw-page-title-main">RAC1</span> Protein-coding gene in humans

Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein found in human cells. It is encoded by the RAC1 gene. This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">PAK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

<span class="mw-page-title-main">ROCK1</span> Protein

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

<span class="mw-page-title-main">RACGAP1</span> Protein-coding gene in the species Homo sapiens

Rac GTPase-activating protein 1 is an enzyme that in humans is encoded by the RACGAP1 gene.

<span class="mw-page-title-main">Basal-like carcinoma</span> Breast cancer subtype

The basal-like carcinoma is a recently proposed subtype of breast cancer defined by its gene expression and protein expression profile.

<span class="mw-page-title-main">IQGAP1</span>

Ras GTPase-activating-like protein IQGAP1 (IQGAP1) also known as p195 is a ubiquitously expressed protein that in humans is encoded by the IQGAP1 gene. IQGAP1 is a scaffold protein involved in regulating various cellular processes ranging from organization of the actin cytoskeleton, transcription, and cellular adhesion to regulating the cell cycle.

<span class="mw-page-title-main">NEDD9</span> Protein-coding gene in the species Homo sapiens

Neural precursor cell expressed developmentally down-regulated protein 9 (NEDD-9) is a protein that in humans is encoded by the NEDD9 gene. NEDD-9 is also known as enhancer of filamentation 1 (EF1), CRK-associated substrate-related protein (CAS-L), and Cas scaffolding protein family member 2 (CASS2). An important paralog of this gene is BCAR1.

<span class="mw-page-title-main">CIB1</span> Protein-coding gene in the species Homo sapiens

Calcium and integrin-binding protein 1 is a protein that in humans is encoded by the CIB1 gene and is located in Chromosome 15. The protein encoded by this gene is a member of the calcium-binding protein family. The specific function of this protein has not yet been determined; however this protein is known to interact with DNA-dependent protein kinase and may play a role in kinase-phosphatase regulation of DNA end-joining. This protein also interacts with integrin alpha(IIb)beta(3), which may implicate this protein as a regulatory molecule for alpha(IIb)beta(3).

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">Hyaluronan-mediated motility receptor</span> Protein-coding gene in the species Homo sapiens

Hyaluronan-mediated motility receptor (HMMR), also known as RHAMM (Receptor for Hyaluronan Mediated Motility) is a protein which in humans is encoded by the HMMR gene. RHAMM recently has been also designated CD168 (cluster of differentiation 168).

<span class="mw-page-title-main">ARHGDIB</span> Protein-coding gene in humans

Rho GDP-dissociation inhibitor 2 is a protein that in humans is encoded by the ARHGDIB gene. Aliases of this gene include RhoGDI2, GDID4, Rho GDI 2, and others.

<span class="mw-page-title-main">RALB</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Ral-B (RalB) is a protein that in humans is encoded by the RALB gene on chromosome 2. This protein is one of two paralogs of the Ral protein, the other being RalA, and part of the Ras GTPase family. RalA functions as a molecular switch to activate a number of biological processes, majorly cell division and transport, via signaling pathways. Its biological role thus implicates it in many cancers.

<span class="mw-page-title-main">MTA3</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.

<span class="mw-page-title-main">XB130</span> Protein-coding gene in the species Homo sapiens

XB130 is a cytosolic adaptor protein and signal transduction mediator. XB130 regulates cell proliferation, cell survival, cell motility and gene expression. XB130 is highly similar to AFAP and is thus known as actin filament associated protein 1-like 2 (AFAP1L2). XB130 is a substrate and regulator of multiple tyrosine kinase-mediated signaling. XB130 is highly expressed in the thyroid and spleen.

<span class="mw-page-title-main">DIRAS3 (gene)</span> Mammalian protein found in Homo sapiens

GTP-binding protein Di-Ras3 (DIRAS3) also known as aplysia ras homology member I (ARHI) is a protein that in humans is encoded by the DIRAS3 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000155366 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000002233 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ridley A. (2006). "Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking". Trends Cell Biol. 16 (10): 522–9. doi:10.1016/j.tcb.2006.08.006. PMID   16949823.
  6. "Entrez Gene: RHOC ras homolog gene family, member C".
  7. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R (April 2010). "Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC". Oncogene. 29 (16): 2441–8. doi:10.1038/onc.2009.515. PMID   20101212. S2CID   25556221.
  8. Jaffe AB, Hall A (2005). "Rho GTPases: Biochemistry and Biology". Annual Review of Cell and Developmental Biology. 21: 247–69. doi:10.1146/annurev.cellbio.21.020604.150721. PMID   16212495.
  9. Vega FM, Ridley AJ (2008). "Rho GTPases in Cancer Cell Biology". FEBS Letters. 582 (14): 2093–2101. doi: 10.1016/j.febslet.2008.04.039 . PMID   18460342.
  10. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I (June 2003). "Up-Regulation of Small GTPases, RhoA and RhoC, Is Associated with Tumor Progression in Ovarian Carcinoma". Laboratory Investigation. 83 (6): 861–870. doi: 10.1097/01.LAB.0000073128.16098.31 . PMID   12808121. S2CID   22119772.
  11. 1 2 Ikoma T, Takahashi T, Nagano S, Li YM, Ohno Y, Ando K, Fujiwara T, Fujiwara H, Kosai K (February 2004). "A Definitive Role of RhoC in Metastasis of Orthotopic Lung Cancer in Mice". Clinical Cancer Research. 10 (3): 1192–1200. doi: 10.1158/1078-0432.ccr-03-0275 . PMID   14871999.
  12. 1 2 3 4 5 6 7 8 Zhao Y, Zhi-hong Z, Hui-mian X (2010). "RhoC Expression Level Is Correlated with the Clinicopathological Characteristics of Ovarian Cancer and the Expression Levels of ROCK-I, VEGF, and MMP9". Gynecologic Oncology. 116 (3): 563–71. doi:10.1016/j.ygyno.2009.11.015. PMID   20022093.
  13. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW (September 2005). "RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis". Genes Dev. 19 (17): 1974–9. doi:10.1101/gad.1310805. PMC   1199568 . PMID   16107613.
  14. 1 2 3 4 5 6 7 Srivastava S, Ramdass B, Nagarajan S, Rehman M, Mukherjee G, Krishna S (2010). "Notch1 Regulates the Functional Contribution of RhoC to Cervical Carcinoma Progression". British Journal of Cancer. 102 (1): 196–205. doi: 10.1038/sj.bjc.6605451 . PMC   2813755 . PMID   19953094.
  15. 1 2 Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011). "RhoA and RhoC Have Distinct Roles in Migration and Invasion by Acting through Different Targets". The Journal of Cell Biology. 193 (4): 655–65. doi: 10.1083/jcb.201011038 . PMC   3166870 . PMID   21576392.
  16. 1 2 3 Wu Y, Tao Y, Chen Y, Xu W (2012). "RhoC Regulates the Proliferation of Gastric Cancer Cells through Interaction with IQGAP1". PLOS ONE. 7 (11): e48917. Bibcode:2012PLoSO...748917W. doi: 10.1371/journal.pone.0048917 . PMC   3492142 . PMID   23145020.
  17. Genda T, Sakamoto M, Ichida T, Asakura H, Kojiro M, Narumiya S, Hirohashi S (1999). "Cell Motility Mediated by Rho and Rho-Associated Protein Kinase Plays a Critical Role in Intrahepatic Metastasis of Human Hepatocellular Carcinoma". Hepatology. 30 (4): 1027–36. doi:10.1002/hep.510300420. PMID   10498656. S2CID   35864555.
  18. 1 2 Van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002). "Mitogen Activated Protein Kinase Pathway Is Involved in RhoC GTPase Induced Motility, Invasion and Angiogenesis in Inflammatory Breast Cancer". Clinical & Experimental Metastasis. 19 (4): 301–11. doi:10.1023/A:1015518114931. hdl: 2027.42/42584 . PMID   12090470. S2CID   211284.
  19. Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, Tan HY, Luo JF, Wu HX (2007). "RhoA and RhoC -siRNA Inhibit the Proliferation and Invasiveness Activity of Human Gastric Carcinoma by Rho/PI3K/Akt Pathway". World Journal of Gastroenterology. 13 (25): 3517–22. doi: 10.3748/wjg.v13.i25.3517 . PMC   4146790 . PMID   17659701.
  20. 1 2 Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S, Tsukada T, et al. (2008). "RhoC Promotes Metastasis via Activation of the Pyk2 Pathway in Prostate Cancer". Cancer Research. 68 (18): 7613–20. doi: 10.1158/0008-5472.CAN-07-6700 . PMC   2741300 . PMID   18794150.
  21. 1 2 Kleer CG, Griffith KA, Sabel MS, Gallagher G, van Golen KL, Wu ZF, Merajver SD (2005). "RhoC-GTPase Is a Novel Tissue Biomarker Associated with Biologically Aggressive Carcinomas of the Breast". Breast Cancer Research and Treatment. 93 (2): 101–10. doi:10.1007/s10549-005-4170-6. hdl: 2027.42/44231 . PMID   16187229. S2CID   9215922.
  22. Wang W, Wu F, Fang F, Tao Y, Yang L (2008). "RhoC Is Essential for Angiogenesis Induced by Hepatocellular Carcinoma Cells via Regulation of Endothelial Cell Organization". Cancer Science. 99 (10): 2012–18. doi:10.1111/j.1349-7006.2008.00902.x. PMID   19016761. S2CID   23715139.
  23. 1 2 3 Wang H, Zhao G, Liu X, Sui A, Yang K, Yao R, Wang Z, Shi Q (2010). "Silencing of RhoA and RhoC Expression by RNA Interference Suppresses Human Colorectal Carcinoma Growth in Vivo". Journal of Experimental & Clinical Cancer Research. 29 (1): 123. doi: 10.1186/1756-9966-29-123 . PMC   2945978 . PMID   20828398.
  24. Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, et al. (2008). "Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies". PLOS Medicine. 5 (12): e232. doi: 10.1371/journal.pmed.0050232 . PMC   2592352 . PMID   19053170.

Further reading