Guanylate-binding protein

Last updated
Guanylate-binding protein, N-terminal domain
PDB 1dg3 EBI.jpg
structure of human guanylate binding protein-1 in nucleotide free form
Identifiers
SymbolGBP
Pfam PF02263
Pfam clan CL0023
InterPro IPR015894
SCOP2 1dg3 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Guanylate-binding protein, C-terminal domain
PDB 1dg3 EBI.jpg
Structure of human guanylate binding protein-1 in nucleotide free form
Identifiers
SymbolGBP_C
Pfam PF02841
InterPro IPR003191
SCOP2 1dg3 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, the guanylate-binding proteins family is a family of GTPases that is induced by interferon (IFN)-gamma. GTPases induced by IFN-gamma (Interferon-inducible GTPase) are key to the protective immunity against microbial and viral pathogens. These GTPases are classified into three groups: the small 47-KD immunity-related GTPases (IRGs), the Mx proteins (MX1, MX2), and the large 65- to 67-kd GTPases. Guanylate-binding proteins (GBP) fall into the last class. [1]

Contents

Genetic Information

GBP genes have been universally recognized in mammalian as well as in most other vertebrate genomes. [2] A single cluster of seven human GBP genes (GBP1-GBP7) is found on chromosome 1q22.2. Unlike humans, in genetically controllable disease models such as mice and zebrafish, [3] members of the GBPs gene family are organized in more than one cluster, in this case, 11 (Gbp2b- Gbp110 and 4 genes (Gbp1-Gbp4), respectively. Examinations of GBP-related sequences have shown that zebrafish gbp3 and gbp4 contain an additional function to find (FIIND) and a caspase recruitment (CARD) domains that resemble those found within the inflammasome-related proteins: Apoptosis-associated speck-like protein containing a CARD (PYCARD) and NLR Family Pyrin Domain Containing 1 (NLRP1). [3] [4]

Structure

Structurally, GBPs consist of two domains: a globular N- terminal domain harboring the GTPase function, and an extended C- terminal helical domain. [3] [5] In addition, some members of the GBPs family harbor motifs (e.g., CaaX motifs) or additional domains that are thought to operate in protein-protein or protein-membrane interactions. [6] [7]

Activity

Some GBPs have exhibited the ability to bind not only guanosine triphosphate (GTP) to produce guanosine diphosphate (GDP) but also GDP to produce guanosine monophosphate (GMP) with equimolar affinity and high intrinsic rates of hydrolyzation. The physiological relevance of the GBP's GDPase activity might yield important insights to elucidate GBP-specific defensive profile versus other INF-induced GTPases(e.g.IRGs). [7] Evidence has suggested GBPs as important players in a variety of disease conditions ranging from infectious and metabolic inflammatory diseases to cancer, [3] [8] In the context of cell protection against bacteria, early efforts conducting loss-function assays revealed a reduced host resistance to several pathogens when lacking GBPs. [9] More recent studies have indicated that GBPs appear to be an agent that disturbs the structural integrity of bacteria, stimulates inflammasome signaling, forms complexes on pathogen-containing vesicles in infected cells, and fosters autophagy and oxidative mechanisms helping pathogen clearance. [10] [11]

Human GBP1 is secreted from cells without the need of a leader peptide, and has been shown to exhibit antiviral activity against Vesicular stomatitis virus and Encephalomyocarditis virus, as well as being able to regulate the inhibition of proliferation and invasion of endothelial cells in response to IFN-gamma. [12]

GBP1, the most widely studied GBP, has been studied for its antimicrobial properties. It can effectively polymerize and target the lipopolysaccharide cell wall of gram-negative bacteria. In said bacteria type, the GBP1 polymer coating alters the lipopolysaccharide membrane, allowing access to other parts of the membrane by other innate antimicrobial agents within the cell to cause pathogen cell death. [13] Besides detecting pathogens and causing bacterial cell lysis, GBP1 can also cause host-programmed cell death. [14]

The GBP family of proteins is highly conserved among many different phyla. [15] They are believed to be a shared gene family that is used to fight off mostly viral, parasitic, and bacterial infections. [13] [15] On that note, the expression of GBPs is noted to increase in humans once the body detects many different types of diseases ranging from the infections listed above to cancer. [15] Due to the similarity between murine and human GBPs, mouse knockout studies have been utilized to investigate the different roles GBPs have in fighting off other diseases. [15] These studies have confirmed that knocking out different GBPs has different effects on combating different infections. [15]

Related Research Articles

<span class="mw-page-title-main">Interferon</span> Signaling proteins released by host cells in response to the presence of pathogens

Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">Phagosome</span>

In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).

<span class="mw-page-title-main">Interferon gamma</span> InterPro Family

Interferon gamma (IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock as a product of human leukocytes stimulated with phytohemagglutinin, and by others as a product of antigen-stimulated lymphocytes. It was also shown to be produced in human lymphocytes. or tuberculin-sensitized mouse peritoneal lymphocytes challenged with Mantoux test (PPD); the resulting supernatants were shown to inhibit growth of vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed IFN-γ release assay used to test for tuberculosis. In humans, the IFN-γ protein is encoded by the IFNG gene.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

<span class="mw-page-title-main">Interferon regulatory factors</span> Protein family

Interferon regulatory factors (IRF) are proteins which regulate transcription of interferons. Interferon regulatory factors contain a conserved N-terminal region of about 120 amino acids, which folds into a structure that binds specifically to the IRF-element (IRF-E) motifs, which is located upstream of the interferon genes. Some viruses have evolved defense mechanisms that regulate and interfere with IRF functions to escape the host immune system. For instance, the remaining parts of the interferon regulatory factor sequence vary depending on the precise function of the protein. The Kaposi sarcoma herpesvirus, KSHV, is a cancer virus that encodes four different IRF-like genes; including vIRF1, which is a transforming oncoprotein that inhibits type 1 interferon activity. In addition, the expression of IRF genes is under epigenetic regulation by promoter DNA methylation.

Pyroptosis is a highly inflammatory form of lytic programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response. This process promotes the rapid clearance of various bacterial, viral, fungal and protozoan infections by removing intracellular replication niches and enhancing the host's defensive responses. Pyroptosis can take place in immune cells and is also reported to occur in keratinocytes and some epithelial cells.

The type III interferon group is a group of anti-viral cytokines, that consists of four IFN-λ (lambda) molecules called IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4. They were discovered in 2003. Their function is similar to that of type I interferons, but is less intense and serves mostly as a first-line defense against viruses in the epithelium.

<span class="mw-page-title-main">Interferon-alpha/beta receptor</span> Heterodimeric receptor

The interferon-α/β receptor (IFNAR) is a virtually ubiquitous membrane receptor which binds endogenous type I interferon (IFN) cytokines. Endogenous human type I IFNs include many subtypes, such as interferons-α, -β, -ε, -κ, -ω, and -ζ.

<span class="mw-page-title-main">STAT4</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 4 (STAT4) is a transcription factor belonging to the STAT protein family, composed of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6. STAT proteins are key activators of gene transcription which bind to DNA in response to cytokine gradient. STAT proteins are a common part of Janus kinase (JAK)- signalling pathways, activated by cytokines.STAT4 is required for the development of Th1 cells from naive CD4+ T cells and IFN-γ production in response to IL-12. There are two known STAT4 transcripts, STAT4α and STAT4β, differing in the levels of interferon-gamma production downstream.

<span class="mw-page-title-main">STAT2</span> Protein-coding gene in Homo sapiens

Signal transducer and activator of transcription 2 is a protein that in humans is encoded by the STAT2 gene. It is a member of the STAT protein family. This protein is critical to the biological response of type I interferons (IFNs). STAT2 sequence identity between mouse and human is only 68%.

<span class="mw-page-title-main">GBP1</span> Protein-coding gene in the species Homo sapiens

Interferon-induced guanylate-binding protein 1 is a protein that in humans is encoded by the GBP1 gene. It belongs to the dynamin superfamily of large GTPases.

<span class="mw-page-title-main">GBP2</span> Protein-coding gene in the species Homo sapiens

Interferon-induced guanylate-binding protein 2 is a protein that in humans is encoded by the GBP2 gene. GBP2 is a gene related to the superfamily of large GTPases which can be induced mainly by interferon gamma.

<span class="mw-page-title-main">AIM2</span> Protein-coding gene in the species Homo sapiens

Interferon-inducible protein AIM2 also known as absent in melanoma 2 or simply AIM2 is a protein that in humans is encoded by the AIM2 gene.

<span class="mw-page-title-main">Inflammasome</span> Cytosolic multiprotein complex that mediates the activation of Caspase 1

Inflammasomes are cytosolic multiprotein oligomers of the innate immune system responsible for the activation of inflammatory responses. Activation and assembly of the inflammasome promotes proteolytic cleavage, maturation and secretion of pro-inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18), as well as cleavage of gasdermin D. The N-terminal fragment resulting from this cleavage induces a pro-inflammatory form of programmed cell death distinct from apoptosis, referred to as pyroptosis, and is responsible for secretion of the mature cytokines, presumably through the formation of pores in the plasma membrane. Additionally, inflammasomes can be incorporated into larger cell death-inducing complexes called PANoptosomes, which drive another distinct form of pro-inflammatory cell death called PANoptosis.

<span class="mw-page-title-main">NLRP11</span> Protein-coding gene in the species Homo sapiens

NOD-like receptor family pyrin domain containing 11 is a protein that in humans is encoded by the NLRP11 gene located on the long arm of human chromosome 19q13.42. NLRP11 belongs to the NALP subfamily, part of a large subfamily of CATERPILLER. It is also known as NALP11, PYPAF6, NOD17, PAN10, and CLR19.6

<span class="mw-page-title-main">IRGs</span>

Immunity Related Guanosine Triphosphatases or IRGs are proteins activated as part of an early immune response. IRGs have been described in various mammals but are most well characterized in mice. IRG activation in most cases is induced by an immune response and leads to clearance of certain pathogens.

<span class="mw-page-title-main">Stimulator of interferon genes</span> Protein-coding gene in the species Homo sapiens

Stimulator of interferon genes (STING), also known as transmembrane protein 173 (TMEM173) and MPYS/MITA/ERIS is a protein that in humans is encoded by the STING1 gene.

Murine caspase-11, and its human homologs caspase-4 and caspase-5, are mammalian intracellular receptor proteases activated by TLR4 and TLR3 signaling during the innate immune response. Caspase-11, also termed the non-canonical inflammasome, is activated by TLR3/TLR4-TRIF signaling and directly binds cytosolic lipopolysaccharide (LPS), a major structural element of Gram-negative bacterial cell walls. Activation of caspase-11 by LPS is known to cause the activation of other caspase proteins, leading to septic shock, pyroptosis, and often organismal death.

Jonathan C. Kagan is an American immunologist and the Marian R. Neutra, Ph.D. Professor of Pediatrics at Harvard Medical School. He is also the director of Basic Research and Shwachman Chair in Gastroenterology at Boston Children's Hospital. Kagan is a world leader in defining the molecular basis of innate immunity and inflammation.

References

  1. Tripal P, Bauer M, Naschberger E, Mörtinger T, Hohenadl C, Cornali E, et al. (January 2007). "Unique features of different members of the human guanylate-binding protein family". Journal of Interferon & Cytokine Research. 27 (1): 44–52. doi:10.1089/jir.2007.0086. PMID   17266443.
  2. Kutsch M, Coers J (October 2021). "Human guanylate binding proteins: nanomachines orchestrating host defense". The FEBS Journal. 288 (20): 5826–5849. doi:10.1111/febs.15662. PMC   8196077 . PMID   33314740.
  3. 1 2 3 4 Kim BH, Chee JD, Bradfield CJ, Park ES, Kumar P, MacMicking JD (May 2016). "Interferon-induced guanylate-binding proteins in inflammasome activation and host defense". Nature Immunology. 17 (5): 481–489. doi:10.1038/ni.3440. PMC   4961213 . PMID   27092805.
  4. Forn-Cuní G, Meijer AH, Varela M (August 2019). "Zebrafish in Inflammasome Research". Cells. 8 (8): 901. doi: 10.3390/cells8080901 . PMC   6721725 . PMID   31443239.
  5. Santos JC, Broz P (October 2018). "Sensing of invading pathogens by GBPs: At the crossroads between cell-autonomous and innate immunity". Journal of Leukocyte Biology. 104 (4): 729–735. doi:10.1002/JLB.4MR0118-038R. PMID   30020539. S2CID   51680456.
  6. Britzen-Laurent N, Bauer M, Berton V, Fischer N, Syguda A, Reipschläger S, et al. (December 2010). "Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hierarchical manner". PLOS ONE. 5 (12): e14246. Bibcode:2010PLoSO...514246B. doi: 10.1371/journal.pone.0014246 . PMC   2998424 . PMID   21151871.
  7. 1 2 Tretina K, Park ES, Maminska A, MacMicking JD (March 2019). "Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease". The Journal of Experimental Medicine. 216 (3): 482–500. doi:10.1084/jem.20182031. PMC   6400534 . PMID   30755454.
  8. Kim BH, Chee JD, Bradfield CJ, Park ES, Kumar P, MacMicking JD (May 2016). "Interferon-induced guanylate-binding proteins in inflammasome activation and host defense". Nature Immunology. 17 (5): 481–489. doi: 10.3389/fimmu.2019.03139 . PMC   4961213 . PMID   27092805.
  9. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (April 2012). "GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals". Science. 336 (6080): 481–485. Bibcode:2012Sci...336..481S. doi: 10.1126/science.1217141 . PMID   22461501. S2CID   206539020.
  10. Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K, Lagrange B, et al. (August 2020). "Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms". Nature Immunology. 21 (8): 880–891. doi:10.1038/s41590-020-0697-2. PMC   7381384 . PMID   32541830.
  11. Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Rühl S, et al. (May 2015). "Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida". Nature Immunology. 16 (5): 476–484. doi:10.1038/ni.3119. PMC   4568307 . PMID   25774716.
  12. Naschberger E, Lubeseder-Martellato C, Meyer N, Gessner R, Kremmer E, Gessner A, Stürzl M (September 2006). "Human guanylate binding protein-1 is a secreted GTPase present in increased concentrations in the cerebrospinal fluid of patients with bacterial meningitis". The American Journal of Pathology. 169 (3): 1088–1099. doi:10.2353/ajpath.2006.060244. PMC   1698817 . PMID   16936281.
  13. 1 2 Kutsch M, Coers J (October 2021). "Human guanylate binding proteins: nanomachines orchestrating host defense". The FEBS Journal. 288 (20): 5826–5849. doi:10.1111/febs.15662. PMC   8196077 . PMID   33314740.
  14. Rivera-Cuevas Y, Clough B, Frickel EM (October 2023). "Human guanylate-binding proteins in intracellular pathogen detection, destruction, and host cell death induction". Current Opinion in Immunology. 84: 102373. doi: 10.1016/j.coi.2023.102373 . PMID   37536111. S2CID   260394934.
  15. 1 2 3 4 5 Tretina K, Park ES, Maminska A, MacMicking JD (March 2019). "Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease". The Journal of Experimental Medicine. 216 (3): 482–500. doi:10.1084/jem.20182031. PMC   6400534 . PMID   30755454.
This article incorporates text from the public domain Pfam and InterPro: IPR003191
This article incorporates text from the public domain Pfam and InterPro: IPR015894