RAC1

Last updated
RAC1
Protein RAC1 PDB 1ds6.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RAC1 , MIG5, Rac-1, TC-25, p21-Rac1, ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1), Rac family small GTPase 1, MRD48
External IDs OMIM: 602048 MGI: 97845 HomoloGene: 69035 GeneCards: RAC1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_198829
NM_006908
NM_018890

NM_009007
NM_001347530

RefSeq (protein)

NP_008839
NP_061485

NP_001334459
NP_033033

Location (UCSC) Chr 7: 6.37 – 6.4 Mb Chr 5: 143.49 – 143.51 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Rac1, also known as Ras-related C3 botulinum toxin substrate 1, is a protein found in human cells. It is encoded by the RAC1 gene. [5] [6] This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions. [7]

Function

Rac1 is a small (~21 kDa) signalling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of GLUT4 [8] [9] translocation to glucose uptake, cell growth, cytoskeletal reorganization, antimicrobial cytotoxicity, [10] and the activation of protein kinases. [11]

Rac1 is a pleiotropic regulator of many cellular processes, including the cell cycle, cell-cell adhesion, motility (through the actin network), and of epithelial differentiation (proposed to be necessary for maintaining epidermal stem cells).

Role in cancer

Along with other subfamily of Rac and Rho proteins, they exert an important regulatory role specifically in cell motility and cell growth. Rac1 has ubiquitous tissue expression, and drives cell motility by formation of lamellipodia. [12] In order for cancer cells to grow and invade local and distant tissues, deregulation of cell motility is one of the hallmark events in cancer cell invasion and metastasis. [13] Overexpression of a constitutively active Rac1 V12 in mice caused a tumour that is phenotypically indistinguishable from human Kaposi's sarcoma. [14] Activating or gain-of-function mutations of Rac1 are shown to play active roles in promoting mesenchymal-type of cell movement assisted by NEDD9 and DOCK3 protein complex. [15] Such abnormal cell motility may result in epithelial mesenchymal transition (EMT) – a driving mechanism for tumour metastasis as well as drug-resistant tumour relapse. [16] [17]

Role in glucose transport

Rac1 is expressed in significant amounts in insulin sensitive tissues, such as adipose tissue and skeletal muscle. Here Rac1 regulated the translocation of glucose transporting GLUT4 vesicles from intracellular compartments to the plasma membrane. [9] [18] [19] In response to insulin, this allows for blood glucose to enter the cell to lower blood glucose. In conditions of obesity and type 2 diabetes, Rac1 signalling in skeletal muscle is dysfunctional, suggesting that Rac1 contributes to the progression of the disease. Rac1 protein is also necessary for glucose uptake in skeletal muscle activated by exercise [8] [20] and muscle stretching [21]

Clinical significance

Activating mutations in Rac1 have been recently discovered in large-scale genomic studies involving melanoma [22] [23] [24] and non-small cell lung cancer. [25] As a result, Rac1 is considered a therapeutic target for many of these diseases. [26]

A few recent studies have also exploited targeted therapy to suppress tumour growth by pharmacological inhibition of Rac1 activity in metastatic melanoma and liver cancer as well as in human breast cancer. [27] [28] [29] For example, Rac1-dependent pathway inhibition resulted in the reversal of tumour cell phenotypes, suggesting Rac1 as a predictive marker and therapeutic target for trastuzumab-resistant breast cancer. [28] However, given Rac1's role in glucose transport, drugs that inhibit Rac1 could potentially be harmful to glucose homeostasis.

Dominant negative or constitutively active germline RAC1 mutations cause diverse phenotypes that have been grouped together as Mental Retardation Type 48. [30] Most mutations cause microcephaly while some specific changes appear to result in macrocephaly.

Interactions

RAC1 has been shown to interact with:

Related Research Articles

Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the SLC2A4 gene. GLUT4 is the insulin-regulated glucose transporter found primarily in adipose tissues and striated muscle. The first evidence for this distinct glucose transport protein was provided by David James in 1988. The gene that encodes GLUT4 was cloned and mapped in 1989.

<span class="mw-page-title-main">Guanine nucleotide exchange factor</span> Proteins which remove GDP from GTPases

Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated structural domains have been shown to exhibit guanine nucleotide exchange activity. Some GEFs can activate multiple GTPases while others are specific to a single GTPase.

The Rho family of GTPases is a family of small signaling G proteins, and is a subfamily of the Ras superfamily. The members of the Rho GTPase family have been shown to regulate many aspects of intracellular actin dynamics, and are found in all eukaryotic kingdoms, including yeasts and some plants. Three members of the family have been studied in detail: Cdc42, Rac1, and RhoA. All G proteins are "molecular switches", and Rho proteins play a role in organelle development, cytoskeletal dynamics, cell movement, and other common cellular functions.

<span class="mw-page-title-main">CDC42</span> Protein-coding gene in the species Homo sapiens

Cell division control protein 42 homolog is a protein that in humans is encoded by the CDC42 gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in S. cerevisiae (yeast) as a mediator of cell division, and is now known to influence a variety of signaling events and cellular processes in a variety of organisms from yeast to mammals.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">PAK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

<span class="mw-page-title-main">ROCK1</span> Protein

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

<span class="mw-page-title-main">RACGAP1</span> Protein-coding gene in the species Homo sapiens

Rac GTPase-activating protein 1 is an enzyme that in humans is encoded by the RACGAP1 gene.

<span class="mw-page-title-main">T-cell lymphoma invasion and metastasis-inducing protein 1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor TIAM1 is a protein that in humans is encoded by the TIAM1 gene.

<span class="mw-page-title-main">IQGAP1</span>

Ras GTPase-activating-like protein IQGAP1 (IQGAP1) also known as p195 is a ubiquitously expressed protein that in humans is encoded by the IQGAP1 gene. IQGAP1 is a scaffold protein involved in regulating various cellular processes ranging from organization of the actin cytoskeleton, transcription, and cellular adhesion to regulating the cell cycle.

<span class="mw-page-title-main">RAC2</span> Protein-coding gene in the species Homo sapiens

Rac2 is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RAC2.

<span class="mw-page-title-main">RhoC</span> Protein-coding gene in the species Homo sapiens

RhoC is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC.

<span class="mw-page-title-main">ARHGEF6</span> Protein-coding gene in humans

Rho guanine nucleotide exchange factor 6 is a protein that, in humans, is encoded by the ARHGEF6 gene.

<span class="mw-page-title-main">Dedicator of cytokinesis protein 1</span> Protein found in humans

Dedicator of cytokinesis protein 1 (Dock1), also (DOCK180), is a large protein encoded in the human by the DOCK1 gene, involved in intracellular signalling networks. It is the mammalian ortholog of the C. elegans protein CED-5 and belongs to the DOCK family of guanine nucleotide exchange factors (GEFs).

<span class="mw-page-title-main">ARHGDIA</span> Protein-coding gene in the species Homo sapiens

Rho GDP-dissociation inhibitor 1 is a protein that in humans is encoded by the ARHGDIA gene.

<span class="mw-page-title-main">ARHGDIB</span> Protein-coding gene in humans

Rho GDP-dissociation inhibitor 2 is a protein that in humans is encoded by the ARHGDIB gene. Aliases of this gene include RhoGDI2, GDID4, Rho GDI 2, and others.

<span class="mw-page-title-main">RhoG</span> Protein-coding gene in the species Homo sapiens

RhoG is a small monomeric GTP-binding protein, and is an important component of many intracellular signalling pathways. It is a member of the Rac subfamily of the Rho family of small G proteins and is encoded by the gene RHOG.

<span class="mw-page-title-main">TRIO (gene)</span> Protein-coding gene in the species Homo sapiens

Triple functional domain protein is a protein that in humans is encoded by the TRIO gene.

<span class="mw-page-title-main">RICS (gene)</span> Protein-coding gene in the species Homo sapiens

Rho GTPase-activating protein 32 is a protein that in humans is encoded by the RICS gene. RICS has two known isoforms, RICS that are expressed primarily at neurite growth cones, and at the post synaptic membranes, and PX-RICS which is more widely expressed in the endoplasmic reticulum, Golgi apparatus and endosomes. The only known domain of the RICS is the RhoGAP domain, whilst PX-RICS has an additional Phox homology and SH3 domain.

<span class="mw-page-title-main">Dedicator of cytokinesis protein 4</span> Protein found in humans

Dedicator of cytokinesis protein 4 (Dock4), is a large protein encoded in the human by the DOCK4 gene, involved in intracellular signalling networks. It is a member of the DOCK-B subfamily of the DOCK family of guanine nucleotide exchange factors (GEFs) which function as activators of small G-proteins. Dock4 activates the small G proteins Rac and Rap1.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000136238 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000001847 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (Oct 1989). "rac, a novel ras-related family of proteins that are botulinum toxin substrates". The Journal of Biological Chemistry. 264 (28): 16378–82. doi: 10.1016/S0021-9258(19)84716-6 . PMID   2674130.
  6. Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E (Nov 1999). "Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors". Oncogene. 18 (48): 6835–9. doi: 10.1038/sj.onc.1203233 . PMID   10597294.
  7. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, Kossenkov AV, Showe LC, Liu Q, Vachani A, Albelda SM, Kissil JL (Feb 2013). "The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis". Oncogene. 32 (7): 903–9. doi:10.1038/onc.2012.99. PMC   3384754 . PMID   22430205.
  8. 1 2 Sylow, Lykke; Nielsen, Ida L.; Kleinert, Maximilian; Møller, Lisbeth L. V.; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J.; Klip, Amira; Jensen, Thomas E. (2016-04-09). "Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice". The Journal of Physiology. 594 (17): 4997–5008. doi:10.1113/JP272039. ISSN   1469-7793. PMC   5009787 . PMID   27061726.
  9. 1 2 Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T (Jul 2010). "Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma". FASEB Journal. 24 (7): 2254–61. doi: 10.1096/fj.09-137380 . PMC   4183928 . PMID   20203090.
  10. Xiang RF (Mar 2016). "Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans". J Biol Chem. 291 (13): 6912–22. doi: 10.1074/jbc.M115.681544 . PMC   4807276 . PMID   26867574.
  11. Ridley AJ (Oct 2006). "Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking". Trends in Cell Biology. 16 (10): 522–9. doi:10.1016/j.tcb.2006.08.006. PMID   16949823.
  12. Parri M, Chiarugi P (2010). "Rac and Rho GTPases in cancer cell motility control". Cell Communication and Signaling. 8 (23): 23. doi: 10.1186/1478-811x-8-23 . PMC   2941746 . PMID   20822528.
  13. Hanahan D, Weinberg RA (Mar 2011). "Hallmarks of cancer: the next generation". Cell. 144 (5): 646–74. doi: 10.1016/j.cell.2011.02.013 . PMID   21376230.
  14. Ma, Qi; Cavallin, Lucas E.; Yan, Bin; Zhu, Shoukang; Duran, Elda Margarita; Wang, Huili; Hale, Laura P.; Dong, Chunming; Cesarman, Ethel (2009-05-26). "Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma". Proceedings of the National Academy of Sciences. 106 (21): 8683–8688. Bibcode:2009PNAS..106.8683M. doi: 10.1073/pnas.0812688106 . ISSN   0027-8424. PMC   2679580 . PMID   19429708.
  15. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (Oct 2008). "Rac activation and inactivation control plasticity of tumor cell movement". Cell. 135 (3): 510–23. doi: 10.1016/j.cell.2008.09.043 . PMID   18984162. S2CID   5745856.
  16. Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, et al. (Jul 11, 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 510–523. doi:10.1126/scitranslmed.3004062. PMC   3733503 . PMID   22786680.
  17. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, Wu KJ, Hung MC, Yang MH (Apr 2012). "RAC1 activation mediates Twist1-induced cancer cell migration". Nature Cell Biology. 14 (4): 366–74. doi:10.1038/ncb2455. PMID   22407364. S2CID   4755216.
  18. Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE (Feb 2014). "Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance". Cellular Signalling. 26 (2): 323–31. doi:10.1016/j.cellsig.2013.11.007. PMID   24216610.
  19. Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA (Jun 2013). "Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle". Diabetes. 62 (6): 1865–75. doi:10.2337/db12-1148. PMC   3661612 . PMID   23423567.
  20. Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA (Apr 2013). "Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle". Diabetes. 62 (4): 1139–51. doi:10.2337/db12-0491. PMC   3609592 . PMID   23274900.
  21. Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE (Feb 2015). "Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1". The Journal of Physiology. 593 (3): 645–56. doi:10.1113/jphysiol.2014.284281. PMC   4324711 . PMID   25416624.
  22. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (Jul 2012). "A landscape of driver mutations in melanoma". Cell. 150 (2): 251–63. doi:10.1016/j.cell.2012.06.024. PMC   3600117 . PMID   22817889.
  23. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (Sep 2012). "Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma". Nature Genetics. 44 (9): 1006–14. doi:10.1038/ng.2359. PMC   3432702 . PMID   22842228.
  24. Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O (Nov 2007). "Rac1 activity regulates proliferation of aggressive metastatic melanoma". Experimental Cell Research. 313 (18): 3832–9. doi:10.1016/j.yexcr.2007.08.017. PMID   17904119.
  25. Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC (Jul 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 142ra95. doi:10.1126/scitranslmed.3004062. PMC   3733503 . PMID   22786680.
  26. McAllister SS (Jul 2012). "Got a light? Illuminating lung cancer". Science Translational Medicine. 4 (142): 142fs22. doi:10.1126/scitranslmed.3004446. PMID   22786678. S2CID   12093516.
  27. Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, et al. (Nov 2011). "Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs". International Journal of Molecular Medicine. 28 (5): 769–776. doi: 10.3892/ijmm.2011.775 . PMID   21837360.
  28. 1 2 Dokmanovic M, Hirsch DS, Shen Y, Wu WJ (Jun 2009). "Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer". Molecular Cancer Therapeutics. 8 (6): 1557–69. doi: 10.1158/1535-7163.mct-09-0140 . PMID   19509242.
  29. Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (Jun 2008). "Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway". Hepatology. 47 (6): 1964–73. doi: 10.1002/hep.22240 . PMID   18506888. S2CID   21106205.
  30. Reijnders, Margot R.F.; Ansor, Nurhuda M.; Kousi, Maria; Yue, Wyatt W.; Tan, Perciliz L.; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R.; Lam, Wayne W.K.; Mancini, Grazia M.S.; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H.; Katsanis, Nicholas; Brunner, Han G.; Banka, Siddharth (September 2017). "RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes". The American Journal of Human Genetics. 101 (3): 466–477. doi:10.1016/j.ajhg.2017.08.007. PMC   5591022 . PMID   28886345.
  31. 1 2 Shin OH, Exton JH (Aug 2001). "Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1". Biochemical and Biophysical Research Communications. 285 (5): 1267–73. doi:10.1006/bbrc.2001.5330. PMID   11478794.
  32. Van Aelst L, Joneson T, Bar-Sagi D (Aug 1996). "Identification of a novel Rac1-interacting protein involved in membrane ruffling". The EMBO Journal. 15 (15): 3778–86. doi:10.1002/j.1460-2075.1996.tb00751.x. PMC   452058 . PMID   8670882.
  33. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (May 2001). "The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways". Nature. 411 (6834): 215–9. doi:10.1038/35075620. PMID   11346801. S2CID   4324211.
  34. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC   1847948 . PMID   17353931.
  35. Grizot S, Fauré J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E (Aug 2001). "Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation". Biochemistry. 40 (34): 10007–13. doi:10.1021/bi010288k. PMID   11513578.
  36. Lian LY, Barsukov I, Golovanov AP, Hawkins DI, Badii R, Sze KH, Keep NH, Bokoch GM, Roberts GC (Jan 2000). "Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1". Structure. 8 (1): 47–55. doi: 10.1016/S0969-2126(00)00080-0 . PMID   10673424.
  37. Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (Jan 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Letters. 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. PMID   9490022. S2CID   10817327.
  38. Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher MC (Aug 2001). "Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex". Biochemistry. 40 (34): 10014–22. doi:10.1021/bi010289c. PMID   11513579.
  39. Fauré J, Dagher MC (May 2001). "Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI)". Biochimie. 83 (5): 409–14. doi:10.1016/S0300-9084(01)01263-9. PMID   11368848.
  40. Miki H, Yamaguchi H, Suetsugu S, Takenawa T (Dec 2000). "IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling". Nature. 408 (6813): 732–5. Bibcode:2000Natur.408..732M. doi:10.1038/35047107. PMID   11130076. S2CID   4426046.
  41. Westendorf JJ (Dec 2001). "The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element". The Journal of Biological Chemistry. 276 (49): 46453–9. doi: 10.1074/jbc.M105162200 . PMID   11590143.
  42. Yayoshi-Yamamoto S, Taniuchi I, Watanabe T (Sep 2000). "FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages". Molecular and Cellular Biology. 20 (18): 6872–81. doi:10.1128/MCB.20.18.6872-6881.2000. PMC   86228 . PMID   10958683.
  43. 1 2 Zhang B, Chernoff J, Zheng Y (Apr 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". The Journal of Biological Chemistry. 273 (15): 8776–82. doi: 10.1074/jbc.273.15.8776 . PMID   9535855.
  44. Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (Sep 1996). "Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1". The Journal of Biological Chemistry. 271 (38): 23363–7. doi: 10.1074/jbc.271.38.23363 . PMID   8798539.
  45. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (Jun 2002). "Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170". Cell. 109 (7): 873–85. doi: 10.1016/S0092-8674(02)00800-0 . PMID   12110184. S2CID   15158637.
  46. Hart MJ, Callow MG, Souza B, Polakis P (Jun 1996). "IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs". The EMBO Journal. 15 (12): 2997–3005. doi:10.1002/j.1460-2075.1996.tb00663.x. PMC   450241 . PMID   8670801.
  47. Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ (Sep 1996). "The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases". Molecular and Cellular Biology. 16 (9): 4869–78. doi:10.1128/mcb.16.9.4869. PMC   231489 . PMID   8756646.
  48. Jefferies C, Bowie A, Brady G, Cooke EL, Li X, O'Neill LA (Jul 2001). "Transactivation by the p65 subunit of NF-kappaB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1" (PDF). Molecular and Cellular Biology. 21 (14): 4544–52. doi:10.1128/MCB.21.14.4544-4552.2001. PMC   87113 . PMID   11416133.
  49. Shimizu M, Wang W, Walch ET, Dunne PW, Epstein HF (Jun 2000). "Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase". FEBS Letters. 475 (3): 273–7. doi: 10.1016/S0014-5793(00)01692-6 . PMID   10869570. S2CID   46238883.
  50. Kitamura Y, Kitamura T, Sakaue H, Maeda T, Ueno H, Nishio S, Ohno S, Osada S, Sakaue M, Ogawa W, Kasuga M (Mar 1997). "Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac". The Biochemical Journal. 322 (3): 873–8. doi:10.1042/bj3220873. PMC   1218269 . PMID   9148763.
  51. Katoh H, Negishi M (Jul 2003). "RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo". Nature. 424 (6947): 461–4. Bibcode:2003Natur.424..461K. doi:10.1038/nature01817. PMID   12879077. S2CID   4411133.
  52. Seoh ML, Ng CH, Yong J, Lim L, Leung T (Mar 2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property". FEBS Letters. 539 (1–3): 131–7. doi: 10.1016/S0014-5793(03)00213-8 . PMID   12650940. S2CID   27574424.
  53. 1 2 Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (Feb 2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes to Cells. 6 (2): 107–19. doi: 10.1046/j.1365-2443.2001.00404.x . PMID   11260256. S2CID   8789941.
  54. Qiu RG, Abo A, Steven Martin G (Jun 2000). "A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation". Current Biology. 10 (12): 697–707. Bibcode:2000CBio...10..697Q. doi: 10.1016/S0960-9822(00)00535-2 . PMID   10873802. S2CID   14825707.
  55. Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (Sep 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". The Journal of Biological Chemistry. 278 (36): 34641–53. doi: 10.1074/jbc.M304594200 . PMID   12819203.
  56. Moon SY, Zang H, Zheng Y (Feb 2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". The Journal of Biological Chemistry. 278 (6): 4151–9. doi: 10.1074/jbc.M207789200 . PMID   12454018.
  57. Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, Guan KL (Oct 2000). "Regulation of STAT3 by direct binding to the Rac1 GTPase". Science. 290 (5489): 144–7. Bibcode:2000Sci...290..144S. doi:10.1126/science.290.5489.144. PMID   11021801.
  58. Worthylake DK, Rossman KL, Sondek J (Dec 2000). "Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1". Nature. 408 (6813): 682–8. Bibcode:2000Natur.408..682W. doi:10.1038/35047014. PMID   11130063. S2CID   4429919.
  59. Gao Y, Xing J, Streuli M, Leto TL, Zheng Y (Dec 2001). "Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors". The Journal of Biological Chemistry. 276 (50): 47530–41. doi: 10.1074/jbc.M108865200 . PMID   11595749.

Further reading