Transmembrane domain

Last updated

A transmembrane domain (TMD, TM domain) is a membrane-spanning protein domain. TMDs may consist of one or several alpha-helices or a transmembrane beta barrel. Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues. TMDs vary greatly in size and hydrophobicity; they may adopt organelle-specific properties. [1]

Contents

Functions of transmembrane domains

Transmembrane domains are known to perform a variety of functions. These include:

Identification of transmembrane helices

Transmembrane helices are visible in structures of membrane proteins determined by X-ray diffraction. They may also be predicted on the basis of hydrophobicity scales. Because the interior of the bilayer and the interiors of most proteins of known structure are hydrophobic, it is presumed to be a requirement of the amino acids that span a membrane that they be hydrophobic as well. However, membrane pumps and ion channels also contain numerous charged and polar residues within the generally non-polar transmembrane segments.

Using "hydrophobicity analysis" to predict transmembrane helices enables a prediction in turn of the "transmembrane topology" of a protein; i.e. prediction of what parts of it protrude into the cell, what parts protrude out, and how many times the protein chain crosses the membrane.

Transmembrane helices can also be identified in silico using the bioinformatic tool, TMHMM. [4]

The role of membrane protein biogenesis and quality control factors

Since protein translation occurs in the cytosol (an aqueous environment), factors that recognize the TMD and protect them in this hostile environment are required. Additional factors that allow the TMD to be incorporated into the target membrane (i.e. endoplasmic reticulum or other organelles) are also required. [5] Factors also detect TMD misfolding within the membrane and perform quality control functions. These factors must be able to recognize a highly variable set of TMDs and can be segregated into those active in the cytosol or active in the membrane. [5]

Cytosolic recognition factors

Cytosolic recognition factors are thought to use two distinct strategies. [5] In the co-translational strategy the recognition and shielding are coupled to protein synthesis. Genome wide association studies indicate the majority of membrane proteins targeting the endoplasmic reticulum are handled by the signal recognition particle which is bound to the ribosomal exit tunnel and initiates recognition and shielding as protein is translated. The second strategy involves tail-anchored proteins, defined by a single TMD located close to the carboxyl terminus of the membrane protein. Once translation is completed, the tail-anchored TMD remains in the ribosomal exit tunnel, and an ATPase mediates targeting to the endoplasmic reticulum. Examples of shuttling factors include TRC40 in higher eukaryotes and Get3 in yeast. Furthermore, general TMD-binding factors protect against aggregation and other disrupting interactions. SGTA and calmodulin are two well-known general TMD-binding factors. Quality control of membrane proteins involve TMD-binding factors that are linked to ubiquitination proteasome system.

Membrane recognition factors

Once transported, factors assist with insertion of the TMD across the hydrophilic layer phosphate "head" group of the phospholipid membrane. [5] Quality control factors must be able to discern function and topology, as well as facilitate extraction to the cytosol. The signal recognition particle transports membrane proteins to the Sec translocation channel, positioning the ribosome exit tunnel proximal to the translocon central pore and minimizing exposure of the TMD to cytosol. Insertases can also mediate TMD insertion into the lipid bilayer. Insertases include the bacterial YidC, mitochondrial Oxa1, and chloroplast Alb3, all of which are evolutionarily related. The conserved Hrd1 and Derlin enzyme families are examples of membrane bound quality control factors.

Examples

Related Research Articles

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of the cell via secretion. Information contained in the protein itself directs this delivery process. Correct sorting is crucial for the cell; errors or dysfunction in sorting have been linked to multiple diseases.

<span class="mw-page-title-main">Transmembrane protein</span> Protein spanning across a biological membrane

A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently undergo significant conformational changes to move a substance through the membrane. They are usually highly hydrophobic and aggregate and precipitate in water. They require detergents or nonpolar solvents for extraction, although some of them (beta-barrels) can be also extracted using denaturing agents.

<span class="mw-page-title-main">Peripheral membrane protein</span> Membrane proteins that adhere temporarily to membranes with which they are associated

Peripheral membrane proteins, or extrinsic membrane proteins, are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.

<span class="mw-page-title-main">Membrane topology</span>

Topology of a transmembrane protein refers to locations of N- and C-termini of membrane-spanning polypeptide chain with respect to the inner or outer sides of the biological membrane occupied by the protein.

The translocon is a complex of proteins associated with the translocation of polypeptides across membranes. In eukaryotes the term translocon most commonly refers to the complex that transports nascent polypeptides with a targeting signal sequence into the interior space of the endoplasmic reticulum (ER) from the cytosol. This translocation process requires the protein to cross a hydrophobic lipid bilayer. The same complex is also used to integrate nascent proteins into the membrane itself. In prokaryotes, a similar protein complex transports polypeptides across the (inner) plasma membrane or integrates membrane proteins. In either case, the protein complex is formed from Sec proteins, with the hetero-trimeric Sec61 being the channel. In prokaryotes, the homologous channel complex is known as SecYEG.

<span class="mw-page-title-main">Mediated transport</span> Transportation of substances via membrane

Mediated transport refers to cellular transport mediated at the lipid bilayer through phospholipid interactions, or more frequently membrane transport proteins. Substances in the human body may be hydrophobic, electrophilic, contain a positively or negatively charge, or have another property. As such there are times when those substances may not be able to pass over the cell membrane using protein-independent movement. The cell membrane is imbedded with many membrane transport proteins that allow such molecules to travel in and out of the cell. There are three types of mediated transporters: uniport, symport, and antiport. Things that can be transported are nutrients, ions, glucose, etc, all depending on the needs of the cell. One example of a uniport mediated transport protein is GLUT1. GLUT1 is a transmembrane protein, which means it spans the entire width of the cell membrane, connecting the extracellular and intracellular region. It is a uniport system because it specifically transports glucose in only one direction, down its concentration gradient across the cell membrane.

<span class="mw-page-title-main">ABC transporter</span> Gene family

The ABC transporters, ATP synthase (ATP)-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

<span class="mw-page-title-main">SNARE protein</span> Protein family

SNARE proteins – "SNAPREceptors" – are a large protein family consisting of at least 24 members in yeasts and more than 60 members in mammalian and plant cells. The primary role of SNARE proteins is to mediate the fusion of vesicles with the target membrane; this notably mediates exocytosis, but can also mediate the fusion of vesicles with membrane-bound compartments. The best studied SNAREs are those that mediate the release of synaptic vesicles containing neurotransmitters in neurons. These neuronal SNAREs are the targets of the neurotoxins responsible for botulism and tetanus produced by certain bacteria.

<span class="mw-page-title-main">Endoplasmic-reticulum-associated protein degradation</span>

Endoplasmic-reticulum-associated protein degradation (ERAD) designates a cellular pathway which targets misfolded proteins of the endoplasmic reticulum for ubiquitination and subsequent degradation by a protein-degrading complex, called the proteasome.

The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. It has been found to be conserved between mammalian species, as well as yeast and worm organisms.

<span class="mw-page-title-main">SOAT1</span> Protein-coding gene in the species Homo sapiens

Sterol O-acyltransferase 1, also known as SOAT1, is an enzyme that in humans is encoded by the SOAT1 gene.

In cell biology, membrane bound polyribosomes are attached to a cell's endoplasmic reticulum. When certain proteins are synthesized by a ribosome they can become "membrane-bound". The newly produced polypeptide chains are inserted directly into the endoplasmic reticulum by the ribosome and are then transported to their destinations. Bound ribosomes usually produce proteins that are used within the cell membrane or are expelled from the cell via exocytosis.

Hydrophobic mismatch is the difference between the thicknesses of hydrophobic regions of a transmembrane protein and of the biological membrane it spans. In order to avoid unfavorable exposure of hydrophobic surfaces to water, the hydrophobic regions of transmembrane proteins are expected to have approximately the same thickness as the hydrophobic region of the surrounding lipid bilayer. Nevertheless, the same membrane protein can be encountered in bilayers of different thickness. In eukaryotic cells, the plasma membrane is thicker than the membranes of the endoplasmic reticulum. Yet all proteins that are abundant in the plasma membrane are initially integrated into the endoplasmic reticulum upon synthesis on ribosomes. Transmembrane peptides or proteins and surrounding lipids can adapt to the hydrophobic mismatch by different means.

<span class="mw-page-title-main">WALP peptide</span> Class of peptides used for studying lipid membranes

WALP peptides are a class of synthesized, membrane-spanning α-helices composed of tryptophan (W), alanine (A), and leucine (L) amino acids. They are designed to study properties of proteins in lipid membranes such as orientation, extent of insertion, and hydrophobic mismatch.

<span class="mw-page-title-main">Sec14</span>

Sec14 is a cytosolic protein found in yeast which plays a role in the regulation of several cellular functions, specifically those related to intracellular transport. Encoded by the Sec14 gene, Sec14p may transport phosphatidylinositol and phosphatidylcholine produced in the endoplasmic reticulum and the Golgi body to other cellular membranes. Additionally, Sec14p potentially plays a role in the localization of lipid raft proteins. Sec14p is an essential gene in yeast, and is homologous in function to phosphatidylinositol transfer protein in mammals. A conditional mutant with non-functional Sec14p presents with Berkeley bodies and deficiencies in protein secretion.

<span class="mw-page-title-main">Cell membrane</span> Biological membrane that separates the interior of a cell from its outside environment

The cell membrane is a biological membrane that separates and protects the interior of a cell from the outside environment. The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose.

A target peptide is a short peptide chain that directs the transport of a protein to a specific region in the cell, including the nucleus, mitochondria, endoplasmic reticulum (ER), chloroplast, apoplast, peroxisome and plasma membrane. Some target peptides are cleaved from the protein by signal peptidases after the proteins are transported.

Stephen H. White is an American Biophysicist, academic, and author. He is a Professor Emeritus of Physiology and Biophysics at the University of California, Irvine.

<span class="mw-page-title-main">Gram domain containing 1b</span> Protein-coding gene in the species Homo sapiens

GRAM domain containing 1B, also known as GRAMD1B, Aster-B and KIAA1201, is a cholesterol transport protein that is encoded by the GRAMD1B gene. It contains a transmembrane region and two domains of known function; the GRAM domain and a VASt domain. It is anchored to the endoplasmic reticulum. This highly conserved gene is found in a variety of vertebrates and invertebrates. Homologs are found in yeast.

<span class="mw-page-title-main">GRAMD1C</span> Protein that is encoded by the GRAMD1C gene

GRAM domain containing 1C also known as Aster-C is a cholesterol transport protein that is encoded by the GRAMD1C gene. It contains a transmembrane region, a GRAM domain and a VASt domain. It is anchored to the endoplasmic reticulum through its transmembrane domain.

References

  1. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). "Membrane Proteins". Molecular Biology of the Cell. 4th Edition.
  2. Langosch, D.; Hofmann, M.; Ungermann, C. (April 2007). "The role of transmembrane domains in membrane fusion". Cellular and Molecular Life Sciences. 64 (7–8): 850–864. doi:10.1007/s00018-007-6439-x. ISSN   1420-682X. PMC   11136198 . PMID   17429580. S2CID   23714815.
  3. Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S. (2013-10-01). "Anchors aweigh: protein localization and transport mediated by transmembrane domains". Trends in Cell Biology. 23 (10): 511–517. doi:10.1016/j.tcb.2013.05.005. ISSN   0962-8924. PMC   3783643 . PMID   23806646.
  4. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (January 2001). "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes". Journal of Molecular Biology. 305 (3): 567–80. doi:10.1006/jmbi.2000.4315. PMID   11152613.
  5. 1 2 3 4 Guna, Alina; Hegde, Ramanujan S. (2018-04-23). "Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control". Current Biology. 28 (8): R498 –R511. doi: 10.1016/j.cub.2018.02.004 . ISSN   1879-0445. PMID   29689233. S2CID   13839449.
  6. Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, et al. (January 2003). "Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family". Journal of Molecular Evolution. 56 (1): 77–88. Bibcode:2003JMolE..56...77D. doi:10.1007/s00239-002-2382-5. PMID   12569425. S2CID   25514671.