Translocon

Last updated

The translocon (also known as a translocator or translocation channel) is a complex of proteins associated with the translocation of polypeptides across membranes. [1] In eukaryotes the term translocon most commonly refers to the complex that transports nascent polypeptides with a targeting signal sequence into the interior (cisternal or lumenal) space of the endoplasmic reticulum (ER) from the cytosol. This translocation process requires the protein to cross a hydrophobic lipid bilayer. The same complex is also used to integrate nascent proteins into the membrane itself (membrane proteins). In prokaryotes, a similar protein complex transports polypeptides across the (inner) plasma membrane or integrates membrane proteins. [2] In either case, the protein complex are formed from Sec proteins (Sec: secretory), with the heterotrimeric Sec61 being the channel. [3] In prokaryotes, the homologous channel complex is known as SecYEG. [4]

Contents

This article focuses on the cell's native translocons, but pathogens can also assemble other translocons in their host membranes, allowing them to export virulence factors into their target cells. [5]

Central channel

The translocation channel is a hetero-trimeric protein complex called SecYEG in prokaryotes and Sec61 in eukaryotes. [6] It consists of the subunits SecY, SecE, and SecG. The structure of this channel, in its idle state, has been solved by X-ray crystallography in archaea. [4] SecY is the large pore subunit. In a side view, the channel has an hourglass shape, with a funnel on each side. The extracellular funnel has a little "plug" formed out of an alpha-helix. In the middle of the membrane is a construction, formed from a pore ring of six hydrophobic amino acids that project their side chains inwards. During protein translocation, the plug is moved out of the way, and a polypeptide chain is moved from the cytoplasmic funnel, through the pore ring, the extracellular funnel, into the extracellular space. Hydrophobic segments of membrane proteins exit sideways through the lateral gate into the lipid phase and become membrane-spanning segments. [4]

In bacteria, SecYEG forms a complex with SecDF, YajC and YidC. [7] [8] In eukaryotes, Sec61 forms a complex with the oligosaccharyl transferase complex, the TRAP complex, and the membrane protein TRAM (possible chaperone). For further components, such as signal peptidase complex and the SRP receptor it is not clear to what extent they only associate transiently to the translocon complex. [9]

Translocation

The channel allows peptides to move in either direction, so additional systems in the translocon are required to move the peptide in a specific direction. There are three types of translocation: cotranslational translocation that happens as translation happens, and two types of post-translational translocation that happens after translation, each seen in eukaryotes and bacteria. While eukaryotes unfold the protein with BiP and use other complexes to transport the peptide, bacteria use the SecA ATPase. [10]

Co-translational

ER translocon complex. Many protein complexes are involved in protein synthesis. The actual production takes place in the ribosomes (yellow and light blue). Through the ER translocon (green: Sec61, blue: TRAP complex, and red: oligosaccharyl transferase complex) the newly synthesized protein is transported across the membrane (gray) into the interior of the ER. Sec61 is the protein-conducting channel and the OST adds sugar moieties to the nascent protein. OST PM-1.jpg
ER translocon complex. Many protein complexes are involved in protein synthesis. The actual production takes place in the ribosomes (yellow and light blue). Through the ER translocon (green: Sec61, blue: TRAP complex, and red: oligosaccharyl transferase complex) the newly synthesized protein is transported across the membrane (gray) into the interior of the ER. Sec61 is the protein-conducting channel and the OST adds sugar moieties to the nascent protein.

In co-translational translocation, the translocon associates with the ribosome so that a growing nascent polypeptide chain is moved from the ribosome tunnel into the SecY channel. The translocon (translocator) acts as a channel through the hydrophobic membrane of the endoplasmic reticulum (after the SRP has dissociated and translation is continued). The emerging polypeptide is threaded through the channel as an unfolded string of amino acids, potentially driven by a Brownian Ratchet. Once translation is finished, a signal peptidase cleaves off the short signal peptide from the nascent protein, leaving the polypeptide free in the interior of the endoplasmic reticulum. [11] [12]

In eukaryotes, proteins due to be translocated to the endoplasmic reticulum are recognized by the signal-recognition particle (SRP), which halts translation of the polypeptide by the ribosome while it attaches the ribosome to the SRP receptor on the endoplasmic reticulum. This recognition event is based upon a specific N-terminal signal sequence that is in the first few codons of the polypeptide to be synthesised. [10] Bacteria also use an SRP, together with a chaperone YidC that is similar to the eukaryote TRAM. [13] [10]

The translocon can also translocate and integrate membrane proteins in the correct orientation into the membrane of the endoplasmic reticulum. The mechanism of this process is not fully understood, but involves the recognition and processing by the translocon of hydrophobic stretches in the amino acid sequence which are destined to become transmembrane helices. Closed by stop-transfer sequences and opened by embedded signal sequences, the plug alters between its open and closed states to place helices in different orientations. [10]

Post-translational

In eukaryotes, post-translational translocation depends on BiP and other complexes, including the SEC62/SEC63 integral membrane protein complex. In this mode of translocation, Sec63 helps BiP hydrolyze ATP, which then binds to the peptide and "pulls" it out. This process is repeated for other BiP molecules until the entire peptide has been pulled through. [10]

In bacteria, the same process is done by a "pushing" ATPase known as SecA, sometimes assisted by the SecDF complex on the other side responsible for pulling. [14] The SecA ATPase uses a "push-and-slide" mechanism to move a polypeptide through the channel. In the ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them (with ATP hydrolysis) into the channel. The interaction is then weakened as SecA enters the ADP-bound state, allowing the polypeptide chain to slide passively in either direction. SecA then grabs a further section of the peptide to repeat the process. [10]

The ER-retrotranslocon

Translocators can also move polypeptides (such as damaged proteins targeted for proteasomes) from the cisternal space of the endoplasmic reticulum to the cytosol. ER-proteins are degraded in the cytosol by the 26S proteasome, a process known as endoplasmic-reticulum-associated protein degradation, and therefore have to be transported by an appropriate channel. This retrotranslocon is still enigmatic.

It was initially believed that the Sec61 channel is responsible for this retrograde transport, implying that transport through Sec61 is not always unidirectional but also can be bidirectional. [15] However, the structure of Sec61 does not support this view and several different proteins have been suggested to be responsible for transport from the ER lumen into the cytosol. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Endoplasmic reticulum</span> Cell organelle that synthesizes, folds and processes proteins

The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER). The endoplasmic reticulum is found in most eukaryotic cells and forms an interconnected network of flattened, membrane-enclosed sacs known as cisternae, and tubular structures in the SER. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum is not found in red blood cells, or spermatozoa.

<span class="mw-page-title-main">Endomembrane system</span> Membranes in the cytoplasm of a eukaryotic cell

The endomembrane system is composed of the different membranes (endomembranes) that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that forms a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of plastids or mitochondria, but might have evolved partially from the actions of the latter.

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of the cell via secretion. Information contained in the protein itself directs this delivery process. Correct sorting is crucial for the cell; errors or dysfunction in sorting have been linked to multiple diseases.

A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs may consist of one or several alpha-helices or a transmembrane beta barrel. Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues. TMDs vary greatly in size and hydrophobicity; they may adopt organelle-specific properties.

The signal recognition particle (SRP) is an abundant, cytosolic, universally conserved ribonucleoprotein that recognizes and targets specific proteins to the endoplasmic reticulum in eukaryotes and the plasma membrane in prokaryotes.

A signal peptide is a short peptide present at the N-terminus of most newly synthesized proteins that are destined toward the secretory pathway. These proteins include those that reside either inside certain organelles, secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, most type II and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. They are a kind of target peptide.

In cell biology, microsomes are heterogeneous vesicle-like artifacts re-formed from pieces of the endoplasmic reticulum (ER) when eukaryotic cells are broken-up in the laboratory; microsomes are not present in healthy, living cells.

Sec61, termed SecYEG in prokaryotes, is a membrane protein complex found in all domains of life. As the core component of the translocon, it transports proteins to the endoplasmic reticulum in eukaryotes and out of the cell in prokaryotes. It is a doughnut-shaped pore through the membrane with 3 different subunits (heterotrimeric), SecY (α), SecE (γ), and SecG (β). It has a region called the plug that blocks transport into or out of the ER. This plug is displaced when the hydrophobic region of a nascent polypeptide interacts with another region of Sec61 called the seam, allowing translocation of the polypeptide into the ER lumen.

A secretory protein is any protein, whether it be endocrine or exocrine, which is secreted by a cell. Secretory proteins include many hormones, enzymes, toxins, and antimicrobial peptides. Secretory proteins are synthesized in the endoplasmic reticulum.

<span class="mw-page-title-main">Signal recognition particle receptor</span>

Signal recognition particle (SRP) receptor, also called the docking protein, is a dimer composed of 2 different subunits that are associated exclusively with the rough ER in mammalian cells. Its main function is to identify the SRP units. SRP is a molecule that helps the ribosome-mRNA-polypeptide complexes to settle down on the membrane of the endoplasmic reticulum.

<span class="mw-page-title-main">Signal recognition particle RNA</span>

The signal recognition particle RNA, is part of the signal recognition particle (SRP) ribonucleoprotein complex. SRP recognizes the signal peptide and binds to the ribosome, halting protein synthesis. SRP-receptor is a protein that is embedded in a membrane, and which contains a transmembrane pore. When the SRP-ribosome complex binds to SRP-receptor, SRP releases the ribosome and drifts away. The ribosome resumes protein synthesis, but now the protein is moving through the SRP-receptor transmembrane pore.

<span class="mw-page-title-main">Ribophorin</span>

Ribophorins are dome shaped transmembrane glycoproteins which are located in the membrane of the rough endoplasmic reticulum, but are absent in the membrane of the smooth endoplasmic reticulum. There are two types of ribophorines: ribophorin I and II. These act in the protein complex oligosaccharyltransferase (OST) as two different subunits of the named complex. Ribophorin I and II are only present in eukaryote cells.

<span class="mw-page-title-main">SecY protein</span>

The SecY protein is the main transmembrane subunit of the bacterial Sec export pathway and of a protein-secreting ATPase complex, also known as a SecYEG translocon. Homologs of the SecYEG complex are found in eukaryotes and in archaea, where the subunit is known as Sec61α.

<span class="mw-page-title-main">RRBP1</span> Protein-coding gene in the species Homo sapiens

Ribosome-binding protein 1, also referred to as p180, is a protein that in humans is encoded by the RRBP1 gene.

<span class="mw-page-title-main">Sec61 alpha 1</span>

Protein transport protein Sec61 subunit alpha isoform 1 is a protein encoded by the SEC61A1 gene in humans.

In cell biology, membrane bound polyribosomes are attached to a cell's endoplasmic reticulum. When certain proteins are synthesized by a ribosome they can become "membrane-bound". The newly produced polypeptide chains are inserted directly into the endoplasmic reticulum by the ribosome and are then transported to their destinations. Bound ribosomes usually produce proteins that are used within the cell membrane or are expelled from the cell via exocytosis.

A target peptide is a short peptide chain that directs the transport of a protein to a specific region in the cell, including the nucleus, mitochondria, endoplasmic reticulum (ER), chloroplast, apoplast, peroxisome and plasma membrane. Some target peptides are cleaved from the protein by signal peptidases after the proteins are transported.

David Domingo Sabatini is an Argentine-American cell biologist and the Frederick L. Ehrman Professor Emeritus of Cell Biology in the Department of Cell Biology at New York University School of Medicine, which he chaired from 1972 to 2011. Sabatini's major research interests have been on the mechanisms responsible for the structural complexity of the eukaryotic cell. Throughout his career, Sabatini has been recognized for his efforts in promoting science in Latin America.

<span class="mw-page-title-main">Bacterial secretion system</span> Protein complexes present on the cell membranes of bacteria for secretion of substances

Bacterial secretion systems are protein complexes present on the cell membranes of bacteria for secretion of substances. Specifically, they are the cellular devices used by pathogenic bacteria to secrete their virulence factors to invade the host cells. They can be classified into different types based on their specific structure, composition and activity. Generally, proteins can be secreted through two different processes. One process is a one-step mechanism in which proteins from the cytoplasm of bacteria are transported and delivered directly through the cell membrane into the host cell. Another involves a two-step activity in which the proteins are first transported out of the inner cell membrane, then deposited in the periplasm, and finally through the outer cell membrane into the host cell.

William Joseph Lennarz was a biochemist at Stony Brook University. He was born in May 1934 in New York City. Before Lennarz began his tenure at Stony Brook, he studied chemistry and organic chemistry. After working as a postdoctoral researcher at Harvard, he developed an interest in biochemistry. He has focused the majority of his research on biochemical processes in cells.

References

  1. Johnson AE, van Waes MA (1999). "The translocon: a dynamic gateway at the ER membrane". Annual Review of Cell and Developmental Biology. 15: 799–842. doi:10.1146/annurev.cellbio.15.1.799. PMID   10611978.
  2. Gold VA, Duong F, Collinson I (2007). "Structure and function of the bacterial Sec translocon". Molecular Membrane Biology. 24 (5–6): 387–94. doi: 10.1080/09687680701416570 . PMID   17710643. S2CID   83946219.
  3. Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (February 1991). "Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex". Nature. 349 (6312): 806–8. Bibcode:1991Natur.349..806D. doi:10.1038/349806a0. PMID   2000150. S2CID   31383053.
  4. 1 2 3 Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (January 2004). "X-ray structure of a protein-conducting channel". Nature. 427 (6969): 36–44. Bibcode:2004Natur.427...36B. doi:10.1038/nature02218. PMID   14661030. S2CID   4360143.
  5. Mueller CA, Broz P, Cornelis GR (June 2008). "The type III secretion system tip complex and translocon". Molecular Microbiology. 68 (5): 1085–95. doi: 10.1111/j.1365-2958.2008.06237.x . PMID   18430138. S2CID   205366024.
  6. Chang Z (2016-01-01). "Biogenesis of Secretory Proteins". In Bradshaw RA, Stahl PD (eds.). Encyclopedia of Cell Biology. Waltham: Academic Press. pp. 535–544. doi:10.1016/b978-0-12-394447-4.10065-3. ISBN   978-0-12-394796-3.
  7. Duong F, Wickner W (May 1997). "Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme". The EMBO Journal. 16 (10): 2756–68. doi:10.1093/emboj/16.10.2756. PMC   1169885 . PMID   9184221.
  8. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, et al. (February 2000). "YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase". The EMBO Journal. 19 (4): 542–9. doi:10.1093/emboj/19.4.542. PMC   305592 . PMID   10675323.
  9. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, et al. (2014). "Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon". Nature Communications. 5 (5): 3072. Bibcode:2014NatCo...5.3072P. doi: 10.1038/ncomms4072 . PMID   24407213.
  10. 1 2 3 4 5 6 Osborne AR, Rapoport TA, van den Berg B (2005). "Protein translocation by the Sec61/SecY channel". Annual Review of Cell and Developmental Biology. 21: 529–50. doi:10.1146/annurev.cellbio.21.012704.133214. PMID   16212506.
  11. Simon SM, Blobel G (May 1991). "A protein-conducting channel in the endoplasmic reticulum". Cell. 65 (3): 371–80. doi:10.1016/0092-8674(91)90455-8. PMID   1902142. S2CID   33241198.
  12. Simon SM, Blobel G (May 1992). "Signal peptides open protein-conducting channels in E. coli". Cell. 69 (4): 677–84. doi:10.1016/0092-8674(92)90231-z. PMID   1375130. S2CID   24540393.
  13. Zhu L, Kaback HR, Dalbey RE (September 2013). "YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery". The Journal of Biological Chemistry. 288 (39): 28180–94. doi: 10.1074/jbc.M113.491613 . PMC   3784728 . PMID   23928306.
  14. Lycklama A, Nijeholt JA, Driessen AJ (April 2012). "The bacterial Sec-translocase: structure and mechanism". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 367 (1592): 1016–28. doi:10.1098/rstb.2011.0201. PMC   3297432 . PMID   22411975.
  15. Römisch K (December 1999). "Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane". Journal of Cell Science. 112 ( Pt 23) (23): 4185–91. doi:10.1242/jcs.112.23.4185. PMID   10564637.
  16. Hampton RY, Sommer T (August 2012). "Finding the will and the way of ERAD substrate retrotranslocation". Current Opinion in Cell Biology. 24 (4): 460–6. doi:10.1016/j.ceb.2012.05.010. PMID   22854296.