SecA

Last updated
SecA
Identifiers
SymbolSecA
Pfam PF07517
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 3DIN

The SecA protein is a cell membrane associated subunit of the bacterial Sec or Type II secretory pathway, a system which is responsible for the secretion of proteins through the cell membrane. Within this system the SecA ATPase forms a translocase complex with the SecYEG channel, thereby driving the movement of the protein substrate across the membrane. [1]

Contents

Structure

SecA is a complex protein whose structure consists of six characterized domains that can explain SecA's capabilities to bind substrates and to move them. The following five domains seem to be present in all SecA proteins that have been structurally analyzed so far. [2]

DEAD motor domain

This amino acid domain is subdivided into the two nucleotide binding folds 1 and 2 (NBF1 and NBF2) where ATP is bound and hydrolyzed. The chemical energy from the phosphodiester bonds results in a conformational change which is transferred to other domains (especially the HWD and the PPXD domains) which consequently mechanically move the preprotein across the membrane. However, these conformational changes are partly regulated by other protomer domains described below.

C-terminal linker domain

The capability to bind to the SecB chaperone during post-translational translocation, the ribosome (during both post-translational translocation and co-translational translocation [3] ) and the phospholipid bilayer is important for SecA functioning and is achieved by the C-terminal linker domain. [4]

Helical wing domain (HWD)

Located at the C-terminal portion of the molecule, this domain is in contact with the HSD and PPXD domains. Likely it plays a role in transferring molecular conformational motion, which it receives from HSD and which originates from ATP hydrolysis in the DEAD motor domain, to the PPXD domain.

Peptide cross linking domain (PPXD)

Since SecA's essential function is the transport of preprotein across the membrane the ability to actually bind preprotein must be given. The PPXD domain fulfils this function upon substrate binding.

Helical scaffold domain (HSD)

This domain lies in the center of the SecA protomer and contacts via α-helical interactions all other subdomains. In addition it contains the intramolecular regulator of ATP hydrolysis 1 (IRA1) subdomain which seems to prevent unwanted ATP hydrolysis when SecA is not bound to SecYEG. Together with IRA1, a conserved salt bridge called Gate 1 might function to prevent unnecessary conformational change. Gate 1 seems to functionally connect the nucleotide (ATP) binding site of the DEAD motor domain with the PPXD domain which results in regulation of ATP hydrolysis only upon preprotein binding. However, this coordinative behaviour has only been shown to occur when SecA is bound to SecYEG. [5]

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of the cell via secretion. Information contained in the protein itself directs this delivery process. Correct sorting is crucial for the cell; errors or dysfunction in sorting have been linked to multiple diseases.

A signal peptide is a short peptide present at the N-terminus of most newly synthesized proteins that are destined toward the secretory pathway. These proteins include those that reside either inside certain organelles, secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, most type II and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. They are a kind of target peptide.

The translocon is a complex of proteins associated with the translocation of polypeptides across membranes. In eukaryotes the term translocon most commonly refers to the complex that transports nascent polypeptides with a targeting signal sequence into the interior space of the endoplasmic reticulum (ER) from the cytosol. This translocation process requires the protein to cross a hydrophobic lipid bilayer. The same complex is also used to integrate nascent proteins into the membrane itself. In prokaryotes, a similar protein complex transports polypeptides across the (inner) plasma membrane or integrates membrane proteins. In either case, the protein complex are formed from Sec proteins, with the heterotrimeric Sec61 being the channel. In prokaryotes, the homologous channel complex is known as SecYEG.

A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion, active transport, osmosis, or reverse diffusion. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers. Examples of channel/carrier proteins include the GLUT 1 uniporter, sodium channels, and potassium channels. The solute carriers and atypical SLCs are secondary active or facilitative transporters in humans. Collectively membrane transporters and channels are known as the transportome. Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.

<span class="mw-page-title-main">AAA proteins</span> Protein family

AAAproteins are a large group of protein family sharing a common conserved module of approximately 230 amino acid residues. This is a large, functionally diverse protein family belonging to the AAA+ protein superfamily of ring-shaped P-loop NTPases, which exert their activity through the energy-dependent remodeling or translocation of macromolecules.

<span class="mw-page-title-main">ATP-binding cassette transporter</span> Gene family

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

<span class="mw-page-title-main">TIM/TOM complex</span>

The TIM/TOM complex is a protein complex in cellular biochemistry which translocates proteins produced from nuclear DNA through the mitochondrial membrane for use in oxidative phosphorylation. In enzymology, the complex is described as an mitochondrial protein-transporting ATPase, or more systematically ATP phosphohydrolase , as the TIM part requires ATP hydrolysis to work.

<span class="mw-page-title-main">Mitochondrial membrane transport protein</span>

Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the membranes of mitochondria. They serve to transport molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane, separated by the inter-membrane space, or inner boundary membrane. The outer membrane is porous, whereas the inner membrane restricts the movement of all molecules. The two membranes also vary in membrane potential and pH. These factors play a role in the function of mitochondrial membrane transport proteins. There are 53 discovered human mitochondrial membrane transporters, with many others that are known to still need discovered.

<span class="mw-page-title-main">Adenine nucleotide translocator</span> Class of transport proteins

Adenine nucleotide translocator (ANT), also known as the ADP/ATP translocase (ANT), ADP/ATP carrier protein (AAC) or mitochondrial ADP/ATP carrier, exchanges free ATP with free ADP across the inner mitochondrial membrane. ANT is the most abundant protein in the inner mitochondrial membrane and belongs to mitochondrial carrier family.

<span class="mw-page-title-main">Mitochondrial carrier</span>

Mitochondrial carriers are proteins from solute carrier family 25 which transfer molecules across the membranes of the mitochondria. Mitochondrial carriers are also classified in the Transporter Classification Database. The Mitochondrial Carrier (MC) Superfamily has been expanded to include both the original Mitochondrial Carrier (MC) family and the Mitochondrial Inner/Outer Membrane Fusion (MMF) family.

Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is designated as a transfer from “side 1” to “side 2” because the designations “in” and “out”, which had previously been used, can be ambiguous. Translocases are the most common secretion system in Gram positive bacteria.

<span class="mw-page-title-main">SecY protein</span>

The SecY protein is the main transmembrane subunit of the bacterial Sec export pathway and of a protein-secreting ATPase complex, also known as a SecYEG translocon. Homologs of the SecYEG complex are found in eukaryotes and in archaea, where the subunit is known as Sec61α.

<span class="mw-page-title-main">Binding immunoglobulin protein</span> Protein-coding gene in the species Homo sapiens

Binding immunoglobulin protein (BiPS) also known as 78 kDa glucose-regulated protein (GRP-78) or heat shock 70 kDa protein 5 (HSPA5) is a protein that in humans is encoded by the HSPA5 gene.

<span class="mw-page-title-main">Translocase of the outer membrane</span>

The translocase of the outer membrane (TOM) is a complex of proteins found in the outer mitochondrial membrane of the mitochondria. It allows movement of proteins through this barrier and into the intermembrane space of the mitochondrion. Most of the proteins needed for mitochondrial function are encoded by the nucleus of the cell. The outer membrane of the mitochondrion is impermeable to large molecules greater than 5000 daltons. The TOM works in conjunction with the translocase of the inner membrane (TIM) to translocate proteins into the mitochondrion. Many of the proteins in the TOM complex, such as TOMM22, were first identified in Neurospora crassa and Saccharomyces cerevisiae. Many of the genes encoding these proteins are designated as TOMM (translocase of the outer mitochondrial membrane) complex genes.

The translocase of the inner membrane (TIM) is a complex of proteins found in the inner mitochondrial membrane of the mitochondria. Components of the TIM complex facilitate the translocation of proteins across the inner membrane and into the mitochondrial matrix. They also facilitate the insertion of proteins into the inner mitochondrial membrane, where they must reside in order to function, these mainly include members of the mitochondrial carrier family of proteins.

SecD and SecF are prokaryotic protein export membrane proteins. They are a part of the larger multimeric protein export complex comprising SecA, D, E, F, G, Y, and YajC. SecD and SecF are required to maintain a proton motive force.

The type 2 secretion system is a type of protein secretion machinery found in various species of Gram-negative bacteria, including many human pathogens such as Pseudomonas aeruginosa and Vibrio cholerae. The type II secretion system is one of six protein secretory systems commonly found in Gram-negative bacteria, along with the type I, type III, and type IV secretion systems, as well as the chaperone/usher pathway, the autotransporter pathway/type V secretion system, and the type VI secretion system. Like these other systems, the type II secretion system enables the transport of cytoplasmic proteins across the lipid bilayers that make up the cell membranes of Gram-negative bacteria. Secretion of proteins and effector molecules out of the cell plays a critical role in signaling other cells and in the invasion and parasitism of host cells.

<span class="mw-page-title-main">Bacterial secretion system</span> Protein complexes present on the cell membranes of bacteria for secretion of substances

Bacterial secretion systems are protein complexes present on the cell membranes of bacteria for secretion of substances. Specifically, they are the cellular devices used by pathogenic bacteria to secrete their virulence factors to invade the host cells. They can be classified into different types based on their specific structure, composition and activity. Generally, proteins can be secreted through two different processes. One process is a one-step mechanism in which proteins from the cytoplasm of bacteria are transported and delivered directly through the cell membrane into the host cell. Another involves a two-step activity in which the proteins are first transported out of the inner cell membrane, then deposited in the periplasm, and finally through the outer cell membrane into the host cell.

<span class="mw-page-title-main">FtsK</span> Protein involved in bacterial cell division

FtsK is a protein in E.Coli involved in bacterial cell division and chromosome segregation. It is one of the largest proteins, consisting of 1329 amino acids. FtsK stands for "Filament temperature sensitive mutant K" because cells expressing a mutant ftsK allele called ftsK44, which encodes an FtsK variant containing an G80A residue change in the second transmembrane segment, fail to divide at high temperatures and form long filaments instead. FtsK, specifically its C-terminal domain, functions as a DNA translocase, interacts with other cell division proteins, and regulates Xer-mediated recombination. FtsK belongs to the AAA superfamily and is present in most bacteria.

References

  1. du Plessis DJ, Nouwen N, Driessen AJ (March 2011). "The Sec translocase". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1808 (3): 851–65. doi: 10.1016/j.bbamem.2010.08.016 . PMID   20801097.
  2. Kusters I, Driessen AJ (June 2011). "SecA, a remarkable nanomachine". Cellular and Molecular Life Sciences. 68 (12): 2053–66. doi:10.1007/s00018-011-0681-y. PMC   3101351 . PMID   21479870.
  3. Wang, Shuai; Jomaa, Ahmad; Jaskolowski, Mateusz; Yang, Chien-I.; Ban, Nenad; Shan, Shu-ou (October 2019). "The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA". Nature Structural & Molecular Biology. 26 (10): 919–929. doi:10.1038/s41594-019-0297-8. ISSN   1545-9985. PMC   6858539 . PMID   31570874.
  4. Jamshad, Mohammed; Knowles, Timothy J; White, Scott A; Ward, Douglas G; Mohammed, Fiyaz; Rahman, Kazi Fahmida; Wynne, Max; Hughes, Gareth W; Kramer, Günter; Bukau, Bernd; Huber, Damon (2019-06-27). Hegde, Ramanujan S; Kuriyan, John (eds.). "The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity". eLife. 8: e48385. doi: 10.7554/eLife.48385 . ISSN   2050-084X. PMC   6620043 . PMID   31246174.
  5. Karamanou S, Gouridis G, Papanikou E, Sianidis G, Gelis I, Keramisanou D, Vrontou E, Kalodimos CG, Economou A (June 2007). "Preprotein-controlled catalysis in the helicase motor of SecA". The EMBO Journal. 26 (12): 2904–14. doi:10.1038/sj.emboj.7601721. PMC   1894763 . PMID   17525736.