Lufotrelvir

Last updated
Lufotrelvir
Lufotrelvir.svg
Legal status
Legal status
  • US:Investigational drug
Identifiers
  • [(3S)-3-[(2S)-2-[(4-methoxy-1H-indol-2-yl)formamido]-4-methylpentanamido]-2-oxo-4-[(3S)-2-oxopyrrolidin-3-yl]butoxy]phosphonic acid
CAS Number
PubChem CID
DrugBank
UNII
KEGG
ChEBI
Chemical and physical data
Formula C24H33N4O9P
Molar mass 552.521 g·mol−1
3D model (JSmol)
  • CC(C)C[C@@H](C(=O)N[C@@H](C[C@@H]1CCNC1=O)C(=O)COP(=O)(O)O)NC(=O)C2=CC3=C(N2)C=CC=C3OC
  • InChI=1S/C24H33N4O9P/c1-13(2)9-18(28-24(32)19-11-15-16(26-19)5-4-6-21(15)36-3)23(31)27-17(10-14-7-8-25-22(14)30)20(29)12-37-38(33,34)35/h4-6,11,13-14,17-18,26H,7-10,12H2,1-3H3,(H,25,30)(H,27,31)(H,28,32)(H2,33,34,35)/t14-,17-,18-/m0/s1
  • Key:FQKALOFOWPDTED-WBAXXEDZSA-N

Lufotrelvir (PF-07304814) is an antiviral drug developed by Pfizer which acts as a 3CL protease inhibitor. [1] It is a prodrug with the phosphate group being cleaved in vivo to yield the active agent PF-00835231. [2] Lufotrelvir is in human clinical trials for the treatment of COVID-19, and shows good activity against COVID-19 including several variant strains, but unlike the related drug nirmatrelvir it is not orally active and must be administered by intravenous infusion, and so has been the less favoured candidate for clinical development overall. [3] [4] [5]

See also

Related Research Articles

Protease inhibitors (PIs) are medications that act by interfering with enzymes that cleave proteins. Some of the most well known are antiviral drugs widely used to treat HIV/AIDS, hepatitis C and COVID-19. These protease inhibitors prevent viral replication by selectively binding to viral proteases and blocking proteolytic cleavage of protein precursors that are necessary for the production of infectious viral particles.

<span class="mw-page-title-main">Ritonavir</span> Antiretroviral medication

Ritonavir, sold under the brand name Norvir, is an antiretroviral medication used along with other medications to treat HIV/AIDS. This combination treatment is known as highly active antiretroviral therapy (HAART). Ritonavir is a protease inhibitor and is used with other protease inhibitors. It may also be used in combination with other medications to treat hepatitis C and COVID-19. It is taken by mouth. Tablets of ritonavir are not bioequivalent to capsules, as the tablets may result in higher peak plasma concentrations.

<span class="mw-page-title-main">Chloroquine</span> Medication used to treat malaria

Chloroquine is a medication primarily used to prevent and treat malaria in areas where malaria remains sensitive to its effects. Certain types of malaria, resistant strains, and complicated cases typically require different or additional medication. Chloroquine is also occasionally used for amebiasis that is occurring outside the intestines, rheumatoid arthritis, and lupus erythematosus. While it has not been formally studied in pregnancy, it appears safe. It was studied to treat COVID-19 early in the pandemic, but these studies were largely halted in the summer of 2020, and is not recommended for this purpose. It is taken by mouth.

<span class="mw-page-title-main">Atovaquone</span> Antimicrobial and antiprotozoan drug

Atovaquone, sold under the brand name Mepron, is an antimicrobial medication for the prevention and treatment of Pneumocystis jirovecii pneumonia (PCP).

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is an antiviral medication for the treatment of influenza and COVID infections used in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

<span class="mw-page-title-main">Camostat</span> Serine protease inhibitor

Camostat is a serine protease inhibitor. Serine protease enzymes have a variety of functions in the body, and so camostat has a diverse range of uses. Camostat is approved in Japan for the treatment of chronic pancreatitis and postoperative reflux esophagitis. The oral proteolytic enzyme inhibitor has been on the market since 1985 under the trade name Foipan Tablets. The manufacturer is Ono Pharmaceutical. The drug is used in the treatment of some forms of cancer and is also effective against some viral infections, as well as inhibiting fibrosis in liver or kidney disease or pancreatitis.

<span class="mw-page-title-main">Nafamostat</span> Chemical compound

Nafamostatmesylate (INN), a synthetic serine protease inhibitor, it is a short-acting anticoagulant, and is also used for the treatment of pancreatitis. It also has some potential antiviral and anti-cancer properties. Nafamostat is a fast-acting proteolytic inhibitor and used during hemodialysis to prevent the proteolysis of fibrinogen into fibrin. The mechanism of action of Nafamostat is as a slow tight-binding substrate, trapping the target protein in the acyl-enzyme intermediate form, resulting in apparent observed inhibition.

<span class="mw-page-title-main">Masitinib</span> Chemical compound

Masitinib is a tyrosine-kinase inhibitor used in the treatment of mast cell tumours in animals, specifically dogs. Since its introduction in November 2008 it has been distributed under the commercial name Masivet. It has been available in Europe since the second part of 2009. Masitinib has been studied for several human conditions including melanoma, multiple myeloma, gastrointestinal cancer, pancreatic cancer, Alzheimer disease, multiple sclerosis, rheumatoid arthritis, mastocytosis, amyotrophic lateral sclerosis and COVID-19.

<span class="mw-page-title-main">3C-like protease</span> Class of enzymes

The 3C-like protease (3CLpro) or main protease (Mpro), formally known as C30 endopeptidase or 3-chymotrypsin-like protease, is the main protease found in coronaviruses. It cleaves the coronavirus polyprotein at eleven conserved sites. It is a cysteine protease and a member of the PA clan of proteases. It has a cysteine-histidine catalytic dyad at its active site and cleaves a Gln–(Ser/Ala/Gly) peptide bond.

<span class="mw-page-title-main">SARS-CoV-2</span> Virus that causes COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic. The virus previously had the provisional name 2019 novel coronavirus (2019-nCoV), and has also been called human coronavirus 2019. First identified in the city of Wuhan, Hubei, China, the World Health Organization designated the outbreak a public health emergency of international concern from January 30, 2020, to May 5, 2023. SARS‑CoV‑2 is a positive-sense single-stranded RNA virus that is contagious in humans.

<span class="mw-page-title-main">Rupintrivir</span> Chemical compound

Rupintrivir is a peptidomimetic antiviral drug which acts as a 3C and 3CL protease inhibitor. It was developed for the treatment of rhinoviruses, and has subsequently been investigated for the treatment of other viral diseases including those caused by picornaviruses, norovirus, and coronaviruses, such as SARS and COVID-19.

<span class="mw-page-title-main">COVID-19 drug repurposing research</span> Drug repurposing research related to COVID-19

Drug repositioning is the repurposing of an approved drug for the treatment of a different disease or medical condition than that for which it was originally developed. This is one line of scientific research which is being pursued to develop safe and effective COVID-19 treatments. Other research directions include the development of a COVID-19 vaccine and convalescent plasma transfusion.

<span class="mw-page-title-main">3CLpro-1</span> Chemical compound

3CLpro-1 is an antiviral drug related to rupintrivir which acts as a 3CL protease inhibitor and was originally developed for the treatment of human enterovirus 71. It is one of the most potent of a large series of compounds developed as inhibitors of the viral enzyme 3CL protease, with an in vitroIC50 of 200 nM. It also shows activity against coronavirus diseases such as SARS and MERS, and is under investigation as a potential treatment agent for the viral disease COVID-19.

<span class="mw-page-title-main">GC376</span> Broad-spectrum antiviral medication

GC376 is a broad-spectrum antiviral medication under development by the biopharmaceutical company Anivive Lifesciences for therapeutic uses in humans and animals. Anivive licensed the exclusive worldwide patent rights to GC376 from Kansas State University. As of 2020, GC376 is being investigated as treatment for COVID-19. GC376 shows activity against many human and animal viruses including coronavirus and norovirus; the most extensive research has been multiple in vivo studies in cats treating a coronavirus which causes deadly feline infectious peritonitis. Other research supports use in porcine epidemic diarrhea virus.

<span class="mw-page-title-main">GS-441524</span> Metabolite of remdesivir

GS-441524 is a nucleoside analogue antiviral drug which was developed by Gilead Sciences. It is the main plasma metabolite of the antiviral prodrug remdesivir, and has a half-life of around 24 hours in human patients. Remdesivir and GS-441524 were both found to be effective in vitro against feline coronavirus strains responsible for feline infectious peritonitis (FIP), a lethal systemic disease affecting domestic cats. Remdesivir was never tested in cats, but GS-441524 has been found to be effective treatment for FIP.

<span class="mw-page-title-main">Nirmatrelvir</span> COVID-19 antiviral medication

Nirmatrelvir is an antiviral medication developed by Pfizer which acts as an orally active 3C-like protease inhibitor. It is part of a nirmatrelvir/ritonavir combination used to treat COVID-19 and sold under the brand name Paxlovid.

<span class="mw-page-title-main">GRL-0617</span> Chemical compound

GRL-0617 is a drug which is one of the first compounds discovered that acts as a selective small-molecule inhibitor of the protease enzyme papain-like protease (PLpro) found in some pathogenic viruses, including the coronavirus SARS-CoV-2. It has been shown to inhibit viral replication in silico and in vitro.

<span class="mw-page-title-main">Bemnifosbuvir</span> Chemical compound

Bemnifosbuvir is an antiviral drug invented by Atea Pharmaceuticals and licensed to Roche for clinical development, a novel nucleotide analog prodrug originally developed for the treatment of hepatitis C. Bemnifosbuvir is the orally bioavailable hemisulfate salt of AT-511, which is metabolized in several steps to the active nucleotide triphosphate AT-9010, acting as an RNA polymerase inhibitor and thereby interfering with viral replication. Bemnifosbuvir has been researched for the treatment of coronavirus diseases such as that produced by SARS-CoV-2. It showed good results in early clinical trials but had inconsistent results at later stages, so the planned Phase 3 trials are being redesigned and results are not expected until late 2022.

<span class="mw-page-title-main">Nirmatrelvir/ritonavir</span> Antiviral combination medication

Nirmatrelvir/ritonavir, sold under the brand name Paxlovid, is a co-packaged medication used as a treatment for COVID‑19. It contains the antiviral medications nirmatrelvir and ritonavir and was developed by Pfizer. Both are protease inhibitors: nirmatrelvir inhibits SARS-CoV-2 main protease, while ritonavir inhibits HIV-1 protease, and is additionally a strong CYP3A inhibitor.

<span class="mw-page-title-main">Ensitrelvir</span> COVID-19 SARS-CoV-2 3CL-protease-inhibitor antiviral drug

Ensitrelvir, sold under the brand name Xocova is an antiviral medication used as a treatment for COVID-19. It was developed by Shionogi in partnership with Hokkaido University and acts as an orally active 3C-like protease inhibitor. It is taken by mouth.

References

  1. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, et al. (November 2020). "Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19". Journal of Medicinal Chemistry. 63 (21): 12725–12747. doi:10.1021/acs.jmedchem.0c01063. PMC   7571312 . PMID   33054210.
  2. Boras B, Jones RM, Anson BJ, Arenson D, Aschenbrenner L, Bakowski MA, et al. (October 2021). "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19". Nature Communications. 12 (1): 6055. Bibcode:2021NatCo..12.6055B. doi:10.1038/s41467-021-26239-2. PMC   8523698 . PMID   34663813.
  3. de Vries M, Mohamed AS, Prescott RA, Valero-Jimenez AM, Desvignes L, O'Connor R, et al. (March 2021). "A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19". Journal of Virology. 95 (7). doi:10.1128/JVI.01819-20. PMC   8139662 . PMID   33622961.
  4. Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ (March 2021). "Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study". Molecules. 26 (6): 1678. doi: 10.3390/molecules26061678 . PMC   8002701 . PMID   33802860.
  5. Vandyck K, Deval J (August 2021). "Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection". Current Opinion in Virology. 49: 36–40. doi:10.1016/j.coviro.2021.04.006. PMC   8075814 . PMID   34029993.