Superspreading event

Last updated
9th floor layout of the Hotel Metropole in Hong Kong, showing where a superspreading event of severe acute respiratory syndrome (SARS) occurred in 2003 Hotel Metropole 9th floor layout SARS 2003.svg
9th floor layout of the Hotel Metropole in Hong Kong, showing where a superspreading event of severe acute respiratory syndrome (SARS) occurred in 2003

A superspreading event (SSEV) is an event in which an infectious disease is spread much more than usual, while an unusually contagious organism infected with a disease is known as a superspreader. In the context of a human-borne illness, a superspreader is an individual who is more likely to infect others, compared with a typical infected person. Such superspreaders are of particular concern in epidemiology.

Contents

Some cases of superspreading conform to the 80/20 rule, [1] where approximately 20% of infected individuals are responsible for 80% of transmissions, although superspreading can still be said to occur when superspreaders account for a higher or lower percentage of transmissions. [2] In epidemics with such superspreader events, the majority of individuals infect relatively few secondary contacts.[ citation needed ] The degree to which superspreading contributes to an epidemic is often quantified by the t20 metric, which denotes the proportion of infections attributable to the most infectious 20% of the population. [3]

SSEVs are shaped by multiple factors including a decline in herd immunity, nosocomial infections, virulence, viral load, misdiagnosis, airflow dynamics, immune suppression, and co-infection with another pathogen. [4]

Definition

Although loose definitions of superspreader events exist, some effort has been made at defining what qualifies as a superspreader event (SSEV). Lloyd-Smith et al. (2005) define a protocol to identify a superspreader event as follows: [2]

  1. estimate the effective reproductive number, R, for the disease and population in question;
  2. construct a Poisson distribution with mean R, representing the expected range of Z due to stochasticity without individual variation;
  3. define an SSEV as any infected person who infects more than Z(n) others, where Z(n) is the nth percentile of the Poisson(R) distribution.

This protocol defines a 99th-percentile SSEV as a case which causes more infections than would occur in 99% of infectious histories in a homogeneous population. [2]

During the SARS-CoV-1 2002–2004 SARS outbreak from China, epidemiologists defined a superspreader as an individual with at least eight transmissions of the disease. [5]

Superspreaders may or may not show any symptoms of the disease. [4] [6]

SSEVs can further be classified into 'societal' and 'isolated' events. [7] Funerals have been known to epidemiology as common superspreader events. In particular where funeral rites involve contact with the decedent, funerary transmission may occur. [8] The International Red Cross proposed the practices now known as "safe and dignified burials" during the Western African Ebola virus epidemic to reduce funerary transmission. [9]

In April 2020 Jonathan Kay reported in relation to the COVID-19 pandemic: [10]

Putting aside hospitals, private residences and old-age homes, almost all of these superspreader events (SSEVs) took place in the context of (1) parties, (2) face-to-face professional networking events and meetings, (3) religious gatherings, (4) sports events, (5) meat-processing facilities, (6) ships at sea, (7) singing groups, and, yes, (8) funerals.

Factors in transmission

How an infection spreads in a community with immunized and non-immunized members. Herd immunity.svg
How an infection spreads in a community with immunized and non-immunized members.

Superspreaders have been identified who excrete a higher than normal number of pathogens during the time they are infectious. This causes their contacts to be exposed to higher viral/bacterial loads than would be seen in the contacts of non-superspreaders with the same duration of exposure. [11]

Basic reproductive number

The basic reproduction number R0 is the average number of secondary infections caused by a typical infective person in a totally susceptible population. [1] The basic reproductive number is found by multiplying the average number of contacts by the average probability that a susceptible individual will become infected, which is called the shedding potential. [2]

R0 = Number of contacts × Shedding potential

Individual reproductive number

The individual reproductive number represents the number of secondary infections caused by a specific individual during the time that individual is infectious. Some individuals have significantly higher than average individual reproductive numbers and are known as superspreaders. Through contact tracing, epidemiologists have identified superspreaders in measles, tuberculosis, rubella, monkeypox, smallpox, Ebola hemorrhagic fever and SARS. [2] [12]

Co-infections with other pathogens

Studies have shown that men with HIV who are co-infected with at least one other sexually transmitted disease, such as gonorrhea, hepatitis C, and herpes simplex 2 virus, have a higher HIV shedding rate than men without co-infection. This shedding rate was calculated in men with similar HIV viral loads. Once treatment for the co-infection has been completed, the HIV shedding rate returns to levels comparable to men without co-infection. [13] [14]

Lack of herd immunity

Herd immunity, or herd effect, refers to the indirect protection that immunized community members provide to non-immunized members in preventing the spread of contagious disease. The greater the number of immunized individuals, the less likely an outbreak can occur because there are fewer susceptible contacts. In epidemiology, herd immunity is known as a dependent happening because it influences transmission over time. As a pathogen that confers immunity to the survivors moves through a susceptible population, the number of susceptible contacts declines. Even if susceptible individuals remain, their contacts are likely to be immunized, preventing any further spread of the infection. [11] [15] The proportion of immune individuals in a population above which a disease may no longer persist is the herd immunity threshold. Its value varies with the virulence of the disease, the efficacy of the vaccine, and the contact parameter for the population. [16] That is not to say that an outbreak can't occur, but it will be limited. [15] [17] [18]

Superspreaders during outbreaks or pandemics

COVID-19 pandemic: 2020–present

Several factors are identified as contributing to superspreading events with COVID-19: closed spaces with poor ventilation, crowds, and close contact settings ("three Cs"). [19]

The South Korean spread of confirmed cases of SARS-CoV-2 infection jumped suddenly starting on 19–20 February 2020. On 19 February, the number of confirmed cases increased by 20. On 20 February, 58 [20] or 70 [21] new cases were confirmed, giving a total of 104 confirmed cases, according to the Centers for Disease Control and Prevention Korea (KCDC). According to Reuters , KCDC attributed the sudden jump to 70 cases linked to "Patient 31", who had participated in a gathering in Daegu at the Shincheonji Church of Jesus the Temple of the Tabernacle of the Testimony. [21] On 20 February, the streets of Daegu were empty in reaction to the Shincheonji outbreak. A resident described the reaction, stating "It's like someone dropped a bomb in the middle of the city. It looks like a zombie apocalypse." [21] On 21 February, the first death was reported. [22] According to the mayor of Daegu, the number of suspected cases as of 21 February is 544 among 4,400 examined followers of the church. [23] Later in the outbreak, in May, a 29-year-old man visited several Seoul nightclubs in one night and resulted in accumulated infections of at least 79 other people. [24]

A two-day leadership conference for the American biotechnology company Biogen was held at the Mariott Long Wharf Hotel in Boston, Massachusetts, from 26 to 28 February 2020. 99 of the 175 executives in attendance later tested positive for COVID-19, and the hotel was shut down days later. [25] A genetic analysis study [26] published later the same year estimated the spread at the conference eventually resulted in 1.9% of U.S. coronavirus cases, or as many as 300,000 people. The event was the subject of a New York Times article, [25] and substantial criticism was leveled at Biogen for its role in the incident.

Between 27 February and 1 March, a Tablighi Jamaat event at Masjid Jamek, Seri Petaling in Kuala Lumpur, Malaysia attended by approximately 16,000 people resulted in a major outbreak across the country. By May 16, 3,348 COVID-19 cases - 48% of Malaysia's total at the time - were linked to the event, and with approximately 10% of attendees visiting from overseas, the event resulted in the virus spreading across Southeast Asia. Cases in Cambodia, Indonesia, Vietnam, Brunei, the Philippines and Thailand were traced back to the mosque gathering. [27] [28]

In New York, a lawyer contracted the illness then spread it to at least twenty other individuals in his community in New Rochelle, creating a cluster of cases that quickly passed 100, [29] accounting for more than half of SARS-CoV2 coronavirus cases in the state during early March 2020. [30] For comparison, the basic reproduction number of the virus, which is the average number of additional people that a single case will infect without any preventative measures, is between 1.4 and 3.9. [31] [32]

On March 6, preacher Baldev Singh returned to India after being infected while traveling in Italy and Germany. He subsequently died, becoming the first coronavirus fatality in the State of Punjab. Testing revealed that he'd infected 26 locals, including 19 relatives, while tracing discovered that he'd had direct contact with more than 550 people. [33] Fearing an outbreak, India's government instituted a local quarantine on 27 March 2020, affecting 40,000 residents from 20 villages. [34] Initial reports claimed that Baldev Singh had ignored self-quarantine orders, and police collaborated with singer Sidhu Moose Wala to release a rap music video blaming the dead man for bringing the virus to Punjab. But Baldev Singh's fellow travelers insisted that no such order had been given, leading to accusations that local authorities had scapegoated him to avoid scrutiny of their own failures. [33] [35]

A Tablighi Jamaat religious congregation that took place in Delhi's Nizamuddin Markaz Mosque in early March 2020 was a coronavirus super-spreader event, with more than 4,000 confirmed cases and at least 27 deaths linked to the event reported across the country. Over 9,000 missionaries may have attended the congregation, with the majority being from various states of India, and 960 attendees from 40 foreign countries. On 18 April, 4,291 confirmed cases of COVID-19 linked to this event by the Union Health Ministry represented a third of all the confirmed cases of India. Around 40,000 people, including Tablighi Jamaat attendees and their contacts, were quarantined across the country.[ citation needed ]

On 11 May 2020, it came to light that a worker at a fish processing plant in Tema, Ghana was believed to have infected over 500 other people with COVID-19. [36]

As of 18 July 2020, more than one thousand suspected superspreading events had been logged, for example a cluster of 187 people who were infected after eating at a Harper's Restaurant and Brew Pub in East Lansing, Michigan. [37]

On 26 September 2020, President Donald Trump announced his Supreme Court Justice nominee, Amy Coney Barrett. The announcement took place at the White House Rose Garden, where around 30 people attentively watched. The outbreak event has since been dubbed a "superspreader" event. Less than a week after the event, Trump himself was diagnosed with SARS-CoV-2, as well as others who attended the Rose Garden event. [38] By October 7, the Federal Emergency Management Agency memo revealed that 34 White House staff members, housekeepers, and other contacts had contracted the virus. [39]

Public health experts have said that the 2021 United States Capitol attack was a potential COVID-19 superspreading event. [40] Few members of the crowd attacking the Capitol wore face coverings, with many coming from out of town, and few of the rioters were immediately detained and identified. [40]

On 30 July 2021, it came to light that a Peruvian man, resident of Córdoba, Argentina, brought the Delta variant of COVID-19 after travelling to Spain, but he did not quarantine himself, infecting 17 relatives and putting in isolation over 800 other people. He and other three people got arrested for disease propagation. [41] 24 days later, the Peruvian man died of a severe pneumonia, being the first death of the Delta variant in Spain. [42]

On 26 November 2021, Scatec ASA, a Norwegian company specializing in renewable energy systems, held a Christmas party in Oslo, Norway attended by 120 people, all of whom were fully vaccinated against COVID-19 and tested negative for COVID-19 prior to the party being held. One person who attended the party had recently returned from South Africa, the epicenter of the SARS-CoV-2 Omicron variant outbreak and a country where the company has a solar panel project. It was later found that the attendee from South Africa had been infected with the Omicron variant. More than half of the party's attendees have since tested positive for COVID-19 and of those attendees, at least 13 of them were confirmed to have the variant. [43] [44] [45]

On 3 April 2022, the Gridiron Dinner in Washington D.C. led to at least 67 people testing positive for COVID-19, including three members of the Cabinet of Joe Biden: Merrick Garland, Gina Raimondo, and Tom Vilsack. [46]

SARS outbreak: 2003

Guangdong Province in southeastern China where the first outbreak of SARS occurred in 2003. Guangdong in China (+all claims hatched).svg
Guangdong Province in southeastern China where the first outbreak of SARS occurred in 2003.

The first cases of SARS occurred in mid-November 2002 in the Guangdong Province of China. This was followed by an outbreak in Hong Kong in February 2003. A Guangdong Province doctor, Liu Jianlun, who had treated SARS cases there, had contracted the virus and was symptomatic. Despite his symptoms, he traveled to Hong Kong to attend a family wedding. He stayed on the ninth floor of the Metropole Hotel in Kowloon, infecting 16 other hotel guests also staying on that floor. The guests then traveled to Canada, Singapore, Taiwan, and Vietnam, spreading SARS to those locations and transmitting what became a global epidemic. [47]

In another case during this same outbreak, a 54-year-old male was admitted to a hospital with coronary heart disease, chronic kidney failure and type II diabetes mellitus. He had been in contact with a patient known to have SARS. Shortly after his admission he developed fever, cough, myalgia and sore throat. The admitting physician suspected SARS. The patient was transferred to another hospital for treatment of his coronary artery disease. While there, his SARS symptoms became more pronounced. Later, it was discovered he had transmitted SARS to 33 other patients in just two days. He was transferred back to the original hospital where he died of SARS.[ citation needed ]

In his post-mortem reflection, Low remained puzzled as to the reason for this phenomenon and speculated that "possible explanations for (the superspreaders') enhanced infectivity include the lack of early implementation of infection control precautions, higher load of SCoV, or larger amounts of respiratory secretions." [48]

The SARS outbreak was eventually contained, but not before it caused 8,273 cases and 775 deaths. Within two weeks of the original outbreak in Guangdong Province, SARS had spread to 29 countries. [5]

Measles outbreak: 1989

Rates of measles vaccination worldwide in 2010 Measles vaccination coverage world.svg
Rates of measles vaccination worldwide in 2010

Measles is a highly contagious, air-borne virus that reappears even among vaccinated populations. In one Finnish town in 1989, an explosive school-based outbreak resulted in 51 cases, several of whom had been previously vaccinated. One child alone infected 22 others. It was noted during this outbreak that when vaccinated siblings shared a bedroom with an infected sibling, seven out of nine became infected as well. [49]

Typhoid fever

Typhoid fever is a human-specific disease caused by the bacterium Salmonella typhi . It is highly contagious and becoming resistant to antibiotics. [50] S. typhi is susceptible to creating asymptomatic carriers. The most famous carriers are Mary Mallon, known as Typhoid Mary, from New York City, and Mr. N. the Milker, from Folkestone, England. [51] Both were active around the same time. Mallon infected 51 people from 1902 to 1909. Mr. N. infected more than 200 people over 14 years from 1901 to 1915. At the request of health officials, Mr. N. gave up working in food service. Mallon was at first also compliant, choosing other work – but eventually she returned to cooking and caused further outbreaks. She was involuntarily quarantined at Brothers Island in New York, where she stayed until she died in November 1938, aged 69. [52]

It has been found that Salmonella typhi persists in infected mice macrophages that have cycled from an inflammatory state to a non-inflammatory state. The bacteria remain and reproduce without causing further symptoms in the mice, and this helps to explain why carriers are asymptomatic. [53] [54] [55] [56]

See also

Related Research Articles

<span class="mw-page-title-main">Epidemic</span> Rapid spread of disease affecting a large number of people in a short time

An epidemic is the rapid spread of disease to a large number of hosts in a given population within a short period of time. For example, in meningococcal infections, an attack rate in excess of 15 cases per 100,000 people for two consecutive weeks is considered an epidemic.

<span class="mw-page-title-main">SARS</span> Disease caused by severe acute respiratory syndrome coronavirus

Severe acute respiratory syndrome (SARS) is a viral respiratory disease of zoonotic origin caused by the virus SARS-CoV-1, the first identified strain of the SARS-related coronavirus. The first known cases occurred in November 2002, and the syndrome caused the 2002–2004 SARS outbreak. In the 2010s, Chinese scientists traced the virus through the intermediary of Asian palm civets to cave-dwelling horseshoe bats in Xiyang Yi Ethnic Township, Yunnan.

<span class="mw-page-title-main">Disease outbreak</span> Sudden increase in occurrences of a disease

In epidemiology, an outbreak is a sudden increase in occurrences of a disease when cases are in excess of normal expectancy for the location or season. It may affect a small and localized group or impact upon thousands of people across an entire continent. The number of cases varies according to the disease-causing agent, and the size and type of previous and existing exposure to the agent. Outbreaks include many epidemics, which term is normally only for infectious diseases, as well as diseases with an environmental origin, such as a water or foodborne disease. They may affect a region in a country or a group of countries. Pandemics are near-global disease outbreaks when multiple and various countries around the Earth are soon infected.

<span class="mw-page-title-main">Asymptomatic carrier</span> Organism which has become infected with a pathogen but displays no symptoms

An asymptomatic carrier is a person or other organism that has become infected with a pathogen, but shows no signs or symptoms.

<span class="mw-page-title-main">Basic reproduction number</span> Metric in epidemiology

In epidemiology, the basic reproduction number, or basic reproductive number, denoted , of an infection is the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection. The definition assumes that no other individuals are infected or immunized. Some definitions, such as that of the Australian Department of Health, add the absence of "any deliberate intervention in disease transmission". The basic reproduction number is not necessarily the same as the effective reproduction number , which is the number of cases generated in the current state of a population, which does not have to be the uninfected state. is a dimensionless number and not a time rate, which would have units of time−1, or units of time like doubling time.

<span class="mw-page-title-main">Endemic (epidemiology)</span> Disease which is constantly present in an area

In epidemiology, an infection is said to be endemic in a specific population or populated place when that infection is constantly present, or maintained at a baseline level, without extra infections being brought into the group as a result of travel or similar means. The term describes the distribution (spread) of an infectious disease among a group of people or within a populated area. An endemic disease always has a steady, predictable number of people getting sick, but that number can be high (hyperendemic) or low (hypoendemic), and the disease can be severe or mild. Also, a disease that is usually endemic can become epidemic.

<span class="mw-page-title-main">Contact tracing</span> Finding and identifying people in contact with someone with an infectious disease

In public health, contact tracing is the process of identifying people who may have been exposed to an infected person ("contacts") and subsequent collection of further data to assess transmission. By tracing the contacts of infected individuals, testing them for infection, and isolating or treating the infected, this public health tool aims to reduce infections in the population. In addition to infection control, contact tracing serves as a means to identify high-risk and medically vulnerable populations who might be exposed to infection and facilitate appropriate medical care. In doing so, public health officials utilize contact tracing to conduct disease surveillance and prevent outbreaks. In cases of diseases of uncertain infectious potential, contact tracing is also sometimes performed to learn about disease characteristics, including infectiousness. Contact tracing is not always the most efficient method of addressing infectious disease. In areas of high disease prevalence, screening or focused testing may be more cost-effective.

In epidemiology, case fatality rate (CFR) – or sometimes more accurately case-fatality risk – is the proportion of people who have been diagnosed with a certain disease and end up dying of it. Unlike a disease's mortality rate, the CFR does not take into account the time period between disease onset and death. A CFR is generally expressed as a percentage. It is a measure of disease lethality, and thus may change with different treatments. CFRs are most often used for with discrete, limited-time courses, such as acute infections.

An emergent virus is a virus that is either newly appeared, notably increasing in incidence/geographic range or has the potential to increase in the near future. Emergent viruses are a leading cause of emerging infectious diseases and raise public health challenges globally, given their potential to cause outbreaks of disease which can lead to epidemics and pandemics. As well as causing disease, emergent viruses can also have severe economic implications. Recent examples include the SARS-related coronaviruses, which have caused the 2002–2004 outbreak of SARS (SARS-CoV-1) and the 2019–2023 pandemic of COVID-19 (SARS-CoV-2). Other examples include the human immunodeficiency virus, which causes HIV/AIDS; the viruses responsible for Ebola; the H5N1 influenza virus responsible for avian influenza; and H1N1/09, which caused the 2009 swine flu pandemic. Viral emergence in humans is often a consequence of zoonosis, which involves a cross-species jump of a viral disease into humans from other animals. As zoonotic viruses exist in animal reservoirs, they are much more difficult to eradicate and can therefore establish persistent infections in human populations.

<span class="mw-page-title-main">Subclinical infection</span> Nearly or completely asymptomatic infection

A subclinical infection—sometimes called a preinfection or inapparent infection—is an infection by a pathogen that causes few or no signs or symptoms of infection in the host. Subclinical infections can occur in both humans and animals. Depending on the pathogen, which can be a virus or intestinal parasite, the host may be infectious and able to transmit the pathogen without ever developing symptoms; such a host is called an asymptomatic carrier. Many pathogens, including HIV, typhoid fever, and coronaviruses such as COVID-19 spread in their host populations through subclinical infection.

<span class="mw-page-title-main">Social distancing</span> Infection control technique by keeping a distance from each other

In public health, social distancing, also called physical distancing, is a set of non-pharmaceutical interventions or measures intended to prevent the spread of a contagious disease by maintaining a physical distance between people and reducing the number of times people come into close contact with each other. It usually involves keeping a certain distance from others and avoiding gathering together in large groups.

<span class="mw-page-title-main">Airborne transmission</span> Disease transmission by airborne particles

Airborne transmission or aerosol transmission is transmission of an infectious disease through small particles suspended in the air. Infectious diseases capable of airborne transmission include many of considerable importance both in human and veterinary medicine. The relevant infectious agent may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, flushing toilets, or any activities which generate aerosol particles or droplets.

<span class="mw-page-title-main">MERS</span> Viral respiratory infection

Middle East respiratory syndrome (MERS) is a viral respiratory infection caused by Middle East respiratory syndrome–related coronavirus (MERS-CoV). Symptoms may range from none, to mild, to severe depending on age and risk level. Typical symptoms include fever, cough, diarrhea, and shortness of breath. The disease is typically more severe in those with other health problems.

<span class="mw-page-title-main">Air China Flight 112</span> Flight that carried a man infected with SARS

Air China Flight 112 was a scheduled international passenger flight on 15 March 2003 that carried a 72-year-old man infected with severe acute respiratory syndrome (SARS). This man would later become the index passenger for the infection of another 20 passengers and two aircraft crew, resulting in the dissemination of SARS north to inner Mongolia and south to Thailand. The incident demonstrated how a single person could spread disease via air travel and was one of a number of superspreading events in the global spread of SARS in 2003. The speed of air travel and the multidirectional routes taken by affected passengers accelerated the spread of SARS with a consequential response from the World Health Organization (WHO), the aviation industry and the public.

<span class="mw-page-title-main">COVID-19</span> Contagious disease caused by SARS-CoV-2

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by the coronavirus SARS-CoV-2. The first known case was identified in Wuhan, China, in December 2019. Most scientists believe the SARS-CoV-2 virus entered into human populations through natural zoonosis, similar to the SARS-CoV-1 and MERS-CoV outbreaks, and consistent with other pandemics in human history. Social and environmental factors including climate change, natural ecosystem destruction and wildlife trade increased the likelihood of such zoonotic spillover. The disease quickly spread worldwide, resulting in the COVID-19 pandemic.

Allison Joan McGeer is a Canadian infectious disease specialist in the Sinai Health System, and a professor in the Department of Laboratory Medicine and Pathobiology at the University of Toronto. She also appointed at the Dalla Lana School of Public Health and a Senior Clinician Scientist at the Lunenfeld-Tanenbaum Research Institute, and is a partner of the National Collaborating Centre for Infectious Diseases. McGeer has led investigations into the severe acute respiratory syndrome outbreak in Toronto and worked alongside Donald Low. During the COVID-19 pandemic, McGeer has studied how SARS-CoV-2 survives in the air and has served on several provincial committees advising aspects of the Government of Ontario's pandemic response.

<span class="mw-page-title-main">Andrea Ammon</span> German physician

Andrea Ammon is a German physician and the former director of the European Centre for Disease Prevention and Control (ECDC), a European Union (EU) agency strengthening Europe's defence against infectious disease. She advised the German government on the SARS and Influenza A virus subtype H2N2 outbreaks.

<span class="mw-page-title-main">Transmission of COVID-19</span> Mechanisms that spread coronavirus disease 2019

The transmission of COVID-19 is the passing of coronavirus disease 2019 from person to person. COVID-19 is mainly transmitted when people breathe in air contaminated by droplets/aerosols and small airborne particles containing the virus. Infected people exhale those particles as they breathe, talk, cough, sneeze, or sing. Transmission is more likely the closer people are. However, infection can occur over longer distances, particularly indoors.

<span class="mw-page-title-main">Public health mitigation of COVID-19</span> Measures to halt the spread of the respiratory disease among populations

Part of managing an infectious disease outbreak is trying to delay and decrease the epidemic peak, known as flattening the epidemic curve. This decreases the risk of health services being overwhelmed and provides more time for vaccines and treatments to be developed. Non-pharmaceutical interventions that may manage the outbreak include personal preventive measures such as hand hygiene, wearing face masks, and self-quarantine; community measures aimed at physical distancing such as closing schools and cancelling mass gathering events; community engagement to encourage acceptance and participation in such interventions; as well as environmental measures such surface cleaning. It has also been suggested that improving ventilation and managing exposure duration can reduce transmission.

<span class="mw-page-title-main">Endemic COVID-19</span> Theoretical future stage of COVID-19

COVID-19 is predicted to become an endemic disease by many experts. The observed behavior of SARS-CoV-2, the virus that causes COVID-19, suggests it is unlikely it will die out, and the lack of a COVID-19 vaccine that provides long-lasting immunity against infection means it cannot immediately be eradicated; thus, a future transition to an endemic phase appears probable. In an endemic phase, people would continue to become infected and ill, but in relatively stable numbers. Such a transition may take years or decades. Precisely what would constitute an endemic phase is contested.

References

  1. 1 2 Galvani AP, May RM (November 2005). "Epidemiology: dimensions of superspreading". Nature. 438 (7066): 293–295. Bibcode:2005Natur.438..293G. doi:10.1038/438293a. PMC   7095140 . PMID   16292292.
  2. 1 2 3 4 5 Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (November 2005). "Superspreading and the effect of individual variation on disease emergence". Nature. 438 (7066): 355–359. Bibcode:2005Natur.438..355L. doi:10.1038/nature04153. PMC   7094981 . PMID   16292310.
  3. von Csefalvay C (January 2023). "Chapter 3: Host factors: Who gets sick and why". In von Csefalvay C (ed.). Computational Modeling of Infectious Disease. Academic Press. pp. 93–119. doi:10.1016/b978-0-32-395389-4.00012-8. ISBN   978-0-323-95389-4.
  4. 1 2 Stein RA (August 2011). "Super-spreaders in infectious diseases". International Journal of Infectious Diseases. 15 (8): e510–e513. doi: 10.1016/j.ijid.2010.06.020 . PMC   7110524 . PMID   21737332. The minority of individuals who infect disproportionately more susceptible contacts, as compared to most individuals who infect few or no others, became known as super-spreaders, and their existence is deeply rooted in history: between 1900 and 1907, Typhoid Mary infected 51 individuals, three of whom died, even though she only had an asymptomatic infection.
  5. 1 2 Shen Z, Ning F, Zhou W, He X, Lin C, Chin DP, et al. (February 2004). "Superspreading SARS events, Beijing, 2003". Emerging Infectious Diseases. 10 (2): 256–260. doi:10.3201/eid1002.030732. PMC   3322930 . PMID   15030693.
  6. Wiley DC, Cory AC (2013). Encyclopedia of School Health. Los Angeles, CA: Sage. ISBN   978-1412996006. Historically, one of the most famous examples of super-spreading was that of Mary Mallon, better known as Typhoid Mary, who infected many contacts, several of whom died, through food she prepared and consequently contaminated, even thought she did not show symptoms.
  7. Majra D, Benson J, Pitts J, Stebbing J (January 2021). "SARS-CoV-2 (COVID-19) superspreader events". The Journal of Infection. 82 (1): 36–40. doi:10.1016/j.jinf.2020.11.021. PMC   7685932 . PMID   33245943.
  8. von Csefalvay C (January 2023). "Chapter 2: Simple compartmental models: The bedrock of mathematical epidemiology". In von Csefalvay C (ed.). Computational Modeling of Infectious Disease. Academic Press. pp. 19–91. doi:10.1016/b978-0-32-395389-4.00011-6. ISBN   978-0-323-95389-4.
  9. Sikakulya FK, Ilumbulumbu MK, Djuma SF, Bunduki GK, Sivulyamwenge AK, Jones MK (December 2021). "Safe and dignified burial of a deceased from a highly contagious infectious disease ebolavirus: Socio-cultural and anthropological implications in the Eastern DR Congo". One Health. 13: 100309. doi:10.1016/j.onehlt.2021.100309. PMC   8379334 . PMID   34458545.
  10. Kay J (30 April 2020). "It's not the size of the event, but the behaviour that matters". National Post, a division of Postmedia Network Inc.
  11. 1 2 Kenneth J. Rothman, Sander Greenland, and Timothy L. Lash. Modern Epidemiology, 3rd Edition. 2008. p. 561. Lippincott, Williams & Wilkins. Philadelphia.
  12. De Serres G, Markowski F, Toth E, Landry M, Auger D, Mercier M, et al. (March 2013). "Largest measles epidemic in North America in a decade--Quebec, Canada, 2011: contribution of susceptibility, serendipity, and superspreading events". The Journal of Infectious Diseases. 207 (6): 990–998. doi: 10.1093/infdis/jis923 . PMID   23264672.
  13. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, et al. (June 1997). "Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group". Lancet. 349 (9069): 1868–1873. doi:10.1016/s0140-6736(97)02190-9. PMID   9217758. S2CID   9723768.
  14. Winter AJ, Taylor S, Workman J, White D, Ross JD, Swan AV, Pillay D (August 1999). "Asymptomatic urethritis and detection of HIV-1 RNA in seminal plasma". Sexually Transmitted Infections. 75 (4): 261–263. doi:10.1136/sti.75.4.261. PMC   1758225 . PMID   10615314.
  15. 1 2 Fine PE (1993). "Herd immunity: history, theory, practice". Epidemiologic Reviews. 15 (2): 265–302. doi:10.1093/oxfordjournals.epirev.a036121. PMID   8174658.
  16. Jamison DT, Breman JG, Measham AR, eds. (2006). "Chapter 4: Cost-Effective Strategies for the Excess Burden of Disease in Developing Countries
    Section: Vaccine-preventable Diseases"
    . Priorities in Health: Disease Control Priorities Companion Volume. World Bank Publications. ISBN   0-8213-6260-7.
  17. Yeung LF, Lurie P, Dayan G, Eduardo E, Britz PH, Redd SB, et al. (December 2005). "A limited measles outbreak in a highly vaccinated US boarding school". Pediatrics. 116 (6): 1287–1291. doi:10.1542/peds.2004-2718. PMID   16322148. S2CID   27236339.
  18. Fine P, Eames K, Heymann DL (April 2011). ""Herd immunity": a rough guide". Clinical Infectious Diseases. 52 (7): 911–916. doi: 10.1093/cid/cir007 . PMID   21427399.
  19. Enserink M, Kupferschmidt K, Desai N (February 2020). "The science of superspreading". Science Magazine.
  20. "코로나19 확진자 104명...31번 환자 연관 신천지교회 대남병원서만 확진자 58명, 1명 사망". 글로벌경제신문 (in Korean). 20 February 2020. Retrieved 16 March 2020.
  21. 1 2 3 Shin H, Cha S (2020-02-20). "'Like a zombie apocalypse': Residents on edge as coronavirus cases surge in South Korea". Thomson Reuters. Archived from the original on 2020-02-20. Retrieved 2020-02-20.
  22. "South Korea reports first coronavirus death as infections linked to church rise". NBC News. 20 February 2020. Retrieved 2020-02-21.
  23. "신천지 관련 확진자 76명으로 늘어...대구 교인 의심자만 544명". Chosun.com. 21 February 2020.
  24. Park Han-na (11 May 2020). "Itaewon cluster caseload rises to 79: Nation adds 35 new cases, 20 in Seoul". The Korea Herald. Archived from the original on 16 May 2020. Retrieved 11 May 2020.
  25. 1 2 Wines M (12 December 2020). "What Happens When a Superspreader Event Keeps Spreading". The New York Times. Retrieved 9 November 2022.
  26. Lemieux JE, Siddle KJ, Shaw BM, Loreth C, Schaffner SF, Gladden-Young A, et al. (February 2021). "Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events". Science. 371 (6529). doi:10.1126/science.abe3261. PMC   7857412 . PMID   33303686.
  27. Che Mat NF, Edinur HA, Abdul Razab MK, Safuan S (May 2020). "A single mass gathering resulted in massive transmission of COVID-19 infections in Malaysia with further international spread". Journal of Travel Medicine. 27 (3). doi: 10.1093/jtm/taaa059 . PMC   7188142 . PMID   32307549.
  28. "Wonder how dangerous a gathering can be? Here's how one event sparked hundreds of coronavirus cases across Asia". www.abc.net.au. 2020-03-18. Retrieved 2020-12-29.
  29. Sheena Jones and Christina Maxouris (11 March 2020). "New York officials traced more than 50 coronavirus cases back to one attorney". CNN. Retrieved 13 March 2020.
  30. Eric Levenson and Kristina Sgueglia (10 March 2020). "New York creates 'containment zone' around cluster of coronavirus cases in New Rochelle". CNN. Retrieved 13 March 2020.
  31. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. (March 2020). "Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia". The New England Journal of Medicine. 382 (13): 1199–1207. doi: 10.1056/NEJMoa2001316 . PMC   7121484 . PMID   31995857.
  32. Riou J, Althaus CL (January 2020). "Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020". Euro Surveillance. 25 (4). doi:10.2807/1560-7917.ES.2020.25.4.2000058. PMC   7001239 . PMID   32019669.
  33. 1 2 "Now, police's Moose Wala song blames 1st causality". The Times of India. 2020-03-28. Retrieved 2020-08-17.
  34. "India 'super spreader' quarantines 40,000 people". BBC News. 2020-03-27. Retrieved 2020-03-27.
  35. "Vilification of Baldev based on falsehood". The Times of India. 2020-03-30. Retrieved 2020-08-17.
  36. Bukola Adebayo (11 May 2020). "A worker infected 533 others with coronavirus at a factory in Ghana, president says". CNN. Retrieved 11 May 2020. Hundreds of factory workers at a fish processing plant in Ghana have tested positive for the coronavirus, the country's president Nana Akufo-Addo said. All 533 of them contracted the virus from one worker at the factory in the port city of Tema, the president said in his public address to the nation Sunday.
  37. Cha A. "'Superspreading' events, triggered by people who may not even know they are infected, propel coronavirus pandemic". Washington Post . Retrieved 18 July 2020.
  38. Says AG (2020-11-02). "Genomic sequence of the White House "superspreader" event". News-Medical.net. Retrieved 2021-03-03.
  39. "White House hosted Covid 'superspreader' event, says Dr Fauci". BBC News. 2020-10-10. Retrieved 2021-03-03.
  40. 1 2 Villegas P, Chason R, Knowles H (8 January 2021). "Storming of Capitol was textbook potential coronavirus superspreader, experts say". The Washington Post. Retrieved January 8, 2021.
  41. Ámbito I. "A Peruvian man ignored Delta-variant positive, reunited with relatives and installed a "epidemiological bomb" on his town". Ámbito. Retrieved 9 August 2021. The Health's Ministry of Córdoba is intensively trying to detect and isolate that came in contact with the first Delta-variant infected in the province, that infected 17 relatives and threatened over more of 800 people
  42. Perfil I (22 August 2021). "First death for Delta variant of Argentina: patient zero Peruvian man who infected his whole town died today". Perfil. Retrieved 23 August 2021. The same Peruvian man that started an "epidemiological bomb" on his town died from a severe pneumonia.
  43. Hinshaw D (2021-12-03). "Omicron Cases at Norway Christmas Party Provide Clues on New Variant's Spread". The Wall Street Journal . ISSN   0099-9660 . Retrieved 2021-12-03.
  44. Fouche G, Adomaitis N (2021-12-03). "Omicron outbreak at Norway Christmas party is biggest outside S. Africa -authorities". Reuters . Retrieved 2021-12-03.
  45. Erdbrink T, Libell HP, Frost N, Yoon J (2021-12-03). "A Christmas party in Norway becomes a possible Omicron-spreading event, and other international news". The New York Times . ISSN   0362-4331 . Retrieved 2021-12-03.
  46. "72 people at high-profile D.C. Dinner test positive for Covid". NBC News . 10 April 2022.
  47. "How SARS changed the world in less than six months" (PDF). Archived from the original (PDF) on April 5, 2012. Retrieved February 4, 2016.
  48. Low, Donald (2004). "Sars: Lessons from Toronto". Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary. National Academies Press (US). pp. 63–71.
  49. Paunio M, Peltola H, Valle M, Davidkin I, Virtanen M, Heinonen OP (December 1998). "Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees". American Journal of Epidemiology. 148 (11): 1103–1110. doi: 10.1093/oxfordjournals.aje.a009588 . PMID   9850133.
  50. Highfield, Roger (28 November 2006). "Typhoid is with us to stay". The Daily Telegraph. Archived from the original on 13 February 2011. Retrieved 2015-03-03.
  51. Mortimer PP (April 1999). "Mr N the milker, and Dr Koch's concept of the healthy carrier". Lancet. 353 (9161): 1354–1356. doi:10.1016/S0140-6736(98)11315-6. PMID   10218549. S2CID   37788256.
  52. Marr JS (May 1999). "Typhoid Mary". Lancet. 353 (9165): 1714. doi:10.1016/S0140-6736(05)77031-8. PMID   10335825. S2CID   1482311.
  53. Ng TM, Monack DM (July 2013). "Revisiting caspase-11 function in host defense". Cell Host & Microbe. 14 (1): 9–14. doi:10.1016/j.chom.2013.06.009. PMC   3785303 . PMID   23870309.
  54. Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, et al. (August 2013). "Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence". Cell Host & Microbe. 14 (2): 171–182. doi:10.1016/j.chom.2013.07.010. PMC   3785333 . PMID   23954156.
  55. Mohan G (August 14, 2013). "Typhoid Mary case may be cracked, a century later". Los Angeles Times . Retrieved 2015-03-03.
  56. McNeil Jr DG (August 26, 2013). "Bacteria study offers clues to Typhoid Mary mystery". The New York Times . Retrieved 2015-03-03.