Vaccine resistance

Last updated

Vaccine resistance is the evolutionary adaptation of pathogens to infect and spread through vaccinated individuals, analogous to antimicrobial resistance. It concerns both human and animal vaccines. Although the emergence of a number of vaccine resistant pathogens has been well documented, this phenomenon is nevertheless much more rare and less of a concern than antimicrobial resistance.

Vaccine resistance may be considered a special case of immune evasion, from the immunity conferred by the vaccine. Since the immunity conferred by a vaccine may be different from that induced by infection by the pathogen, the immune evasion may also be easier (in case of an inefficient vaccine) or more difficult (would be the case of the universal flu vaccine). We speak of vaccine resistance only if the immune evasion is a result of evolutionary adaptation of the pathogen (and not a feature of the pathogen that it had before any evolutionary adaptation to the vaccine) and the adaptation is driven by the selective pressure induced by the vaccine (this would not be the case of an immune evasion that is the result of genetic drift that would be present even without vaccinating the population).[ citation needed ]

Some of the causes advanced for less frequent emergence of resistance are [1] [2] that

For diseases that confer long lasting immunity after exposure, typically childhood diseases, it was argued that a vaccine may provide the same immune response as natural infection, so it is expected that there should be no vaccine resistance. [3] [4]

If vaccine resistance emerges the vaccine may retain some level of protection against serious infection, possibly by modifying the immune response of the host away from immunopathology. [5]

The best known cases of vaccine resistance are for the following diseases

Other less documented cases are for avian influenza, [24] avian reovirus, [25] Corynebacterium diphtheriae , [26] feline calicivirus, [27] H. influenzae , [28] infectious bursal disease virus, [29] Neisseria meningitidis , [30] Newcastle disease virus, [31] and porcine circovirus type 2. [32]

Related Research Articles

<span class="mw-page-title-main">Vaccine</span> Pathogen-derived preparation that provides acquired immunity to an infectious disease

A vaccine is a biological preparation that provides active acquired immunity to a particular infectious or malignant disease. The safety and effectiveness of vaccines has been widely studied and verified. A vaccine typically contains an agent that resembles a disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and to further recognize and destroy any of the microorganisms associated with that agent that it may encounter in the future.

<span class="mw-page-title-main">Herd immunity</span> Concept in epidemiology

Herd immunity is a form of indirect protection that applies only to contagious diseases. It occurs when a sufficient percentage of a population has become immune to an infection, whether through previous infections or vaccination, thereby reducing the likelihood of infection for individuals who lack immunity.

<span class="mw-page-title-main">Whooping cough</span> Human disease caused by the bacteria Bordetella pertussis

Whooping cough, also known as pertussis or the 100-day cough, is a highly contagious, vaccine-preventable bacterial disease. Initial symptoms are usually similar to those of the common cold with a runny nose, fever, and mild cough, but these are followed by two or three months of severe coughing fits. Following a fit of coughing, a high-pitched whoop sound or gasp may occur as the person breathes in. The violent coughing may last for 10 or more weeks, hence the phrase "100-day cough". A person may cough so hard that they vomit, break ribs, or become very tired from the effort. Children less than one year old may have little or no cough and instead have periods where they cannot breathe. The time between infection and the onset of symptoms is usually seven to ten days. Disease may occur in those who have been vaccinated, but symptoms are typically milder.

<span class="mw-page-title-main">Hepatitis A</span> Acute infectious disease of the liver

Hepatitis A is an infectious disease of the liver caused by Hepatovirus A (HAV); it is a type of viral hepatitis. Many cases have few or no symptoms, especially in the young. The time between infection and symptoms, in those who develop them, is 2–6 weeks. When symptoms occur, they typically last 8 weeks and may include nausea, vomiting, diarrhea, jaundice, fever, and abdominal pain. Around 10–15% of people experience a recurrence of symptoms during the 6 months after the initial infection. Acute liver failure may rarely occur, with this being more common in the elderly.

<i>Adenoviridae</i> Family of viruses

Adenoviruses are medium-sized, nonenveloped viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from their initial isolation from human adenoids in 1953.

<span class="mw-page-title-main">DPT vaccine</span> Class of combination vaccines

The DPT vaccine or DTP vaccine is a class of combination vaccines against three infectious diseases in humans: diphtheria, pertussis, and tetanus. The vaccine components include diphtheria and tetanus toxoids and either killed whole cells of the bacterium that causes pertussis or pertussis antigens. The term toxoid refers to vaccines which use an inactivated toxin produced by the pathogen which they are targeted against in order to generate an immune response. In this way, the toxoid vaccine generates an immune response which is targeted against the toxin which is produced by the pathogen and causes disease, rather than a vaccine which is targeted against the pathogen itself. The whole cells or antigens will be depicted as either "DTwP" or "DTaP", where the lower-case "w" indicates whole-cell inactivated pertussis and the lower-case "a" stands for "acellular". In comparison to alternative vaccine types, such as live attenuated vaccines, the DTP vaccine does not contain the pathogen itself, but rather uses inactivated toxoid to generate an immune response; therefore, there is not a risk of use in populations that are immune compromised since there is not any known risk of causing the disease itself. As a result, the DTP vaccine is considered a safe vaccine to use in anyone and it generates a much more targeted immune response specific for the pathogen of interest. However, booster doses are recommended every ten years to maintain immune protection against these pathogens.

<span class="mw-page-title-main">Pertactin</span> Virulence factor of Bordetella pertussis

In molecular biology, pertactin (PRN) is a highly immunogenic virulence factor of Bordetella pertussis, the bacterium that causes pertussis. Specifically, it is an outer membrane protein that promotes adhesion to tracheal epithelial cells. PRN is purified from Bordetella pertussis and is used for the vaccine production as one of the important components of acellular pertussis vaccine.

<i>Bordetella</i> Genus of bacteria

Bordetella is a genus of small, Gram-negative, coccobacilli bacteria of the phylum Pseudomonadota. Bordetella species, with the exception of B. petrii, are obligate aerobes, as well as highly fastidious, or difficult to culture. All species can infect humans. The first three species to be described ; are sometimes referred to as the 'classical species'. Two of these are also motile.

<span class="mw-page-title-main">Original antigenic sin</span> Immune phenomenon

Original antigenic sin, also known as antigenic imprinting, the Hoskins effect, or immunological imprinting, is the propensity of the immune system to preferentially use immunological memory based on a previous infection when a second slightly different version of that foreign pathogen is encountered. This leaves the immune system "trapped" by the first response it has made to each antigen, and unable to mount potentially more effective responses during subsequent infections. Antibodies or T-cells induced during infections with the first variant of the pathogen are subject to repertoire freeze, a form of original antigenic sin.

Viral pneumonia is a pneumonia caused by a virus. Pneumonia is an infection that causes inflammation in one or both of the lungs. The pulmonary alveoli fill with fluid or pus making it difficult to breathe. Pneumonia can be caused by bacteria, viruses, fungi or parasites. Viruses are the most common cause of pneumonia in children, while in adults bacteria are a more common cause.

<i>Bordetella pertussis</i> Species of bacterium causing pertussis or whooping cough

Bordetella pertussis is a Gram-negative, aerobic, pathogenic, encapsulated coccobacillus of the genus Bordetella, and the causative agent of pertussis or whooping cough. Like B. bronchiseptica, B. pertussis is motile and expresses a flagellum-like structure. Its virulence factors include pertussis toxin, adenylate cyclase toxin, filamentous hæmagglutinin, pertactin, fimbria, and tracheal cytotoxin.

<span class="mw-page-title-main">Booster dose</span> Additional administration of vaccine

A booster dose is an extra administration of a vaccine after an earlier (primer) dose. After initial immunization, a booster provides a re-exposure to the immunizing antigen. It is intended to increase immunity against that antigen back to protective levels after memory against that antigen has declined through time. For example, tetanus shot boosters are often recommended every 10 years, by which point memory cells specific against tetanus lose their function or undergo apoptosis.

Passive immunity is the transfer of active humoral immunity of ready-made antibodies. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta, and it can also be induced artificially, when high levels of antibodies specific to a pathogen or toxin are transferred to non-immune persons through blood products that contain antibodies, such as in immunoglobulin therapy or antiserum therapy. Passive immunization is used when there is a high risk of infection and insufficient time for the body to develop its own immune response, or to reduce the symptoms of ongoing or immunosuppressive diseases. Passive immunization can be provided when people cannot synthesize antibodies, and when they have been exposed to a disease that they do not have immunity against.

A breakthrough infection is a case of illness in which a vaccinated individual becomes infected with the illness, because the vaccine has failed to provide complete immunity against the pathogen. Breakthrough infections have been identified in individuals immunized against a variety of diseases including mumps, varicella (Chickenpox), influenza, and COVID-19. The characteristics of the breakthrough infection are dependent on the virus itself. Often, infection of the vaccinated individual results in milder symptoms and shorter duration than if the infection were contracted naturally.

<i>Bordetella parapertussis</i> Species of bacterium

Bordetella parapertussis is a small Gram-negative bacterium of the genus Bordetella that is adapted to colonise the mammalian respiratory tract. Pertussis caused by B. parapertussis manifests with similar symptoms to B. pertussis-derived disease, but in general tends to be less severe. Immunity derived from B. pertussis does not protect against infection by B. parapertussis, however, because the O-antigen is found only on B. parapertussis. This antigen protects B. parapertussis against antibodies specific to B. pertussis, so the bacteria are free to colonize the host's lungs without being subject to attack by previous antibodies. These findings suggest B. parapertussis evolved in a host population that had already developed immunity to B. pertussis, where being able to evade B. pertussis immunity was an advantage.

Antigenic escape, immune escape, immune evasion or escape mutation occurs when the immune system of a host, especially of a human being, is unable to respond to an infectious agent: the host's immune system is no longer able to recognize and eliminate a pathogen, such as a virus. This process can occur in a number of different ways of both a genetic and an environmental nature. Such mechanisms include homologous recombination, and manipulation and resistance of the host's immune responses.

<span class="mw-page-title-main">Hepatitis B vaccine</span> Vaccine against hepatitis B

Hepatitis B vaccine is a vaccine that prevents hepatitis B. The first dose is recommended within 24 hours of birth with either two or three more doses given after that. This includes those with poor immune function such as from HIV/AIDS and those born premature. It is also recommended that health-care workers be vaccinated. In healthy people, routine immunization results in more than 95% of people being protected.

<span class="mw-page-title-main">Hepatitis B</span> Human viral infection

Hepatitis B is an infectious disease caused by the Hepatitis B virus (HBV) that affects the liver; it is a type of viral hepatitis. It can cause both acute and chronic infection.

<span class="mw-page-title-main">Pertussis vaccine</span> Vaccine protecting against whooping cough

Pertussis vaccine is a vaccine that protects against whooping cough (pertussis). There are two main types: whole-cell vaccines and acellular vaccines. The whole-cell vaccine is about 78% effective while the acellular vaccine is 71–85% effective. The effectiveness of the vaccines appears to decrease by between 2 and 10% per year after vaccination with a more rapid decrease with the acellular vaccines. The vaccine is only available in combination with tetanus and diphtheria vaccines. Pertussis vaccine is estimated to have saved over 500,000 lives in 2002.

<span class="mw-page-title-main">Viral vector vaccine</span> Type of vaccine

A viral vector vaccine is a vaccine that uses a viral vector to deliver genetic material (DNA) that can be transcribed by the recipient's host cells as mRNA coding for a desired protein, or antigen, to elicit an immune response. As of April 2021, six viral vector vaccines, four COVID-19 vaccines and two Ebola vaccines, have been authorized for use in humans.

References

  1. Kennedy, David A.; Read, Andrew F. (2017-03-29). "Why does drug resistance readily evolve but vaccine resistance does not?". Proceedings of the Royal Society B: Biological Sciences. 284 (1851): 20162562. doi:10.1098/rspb.2016.2562. ISSN   0962-8452. PMC   5378080 . PMID   28356449.
  2. Kennedy, David A.; Read, Andrew F. (2018-12-18). "Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance". Proceedings of the National Academy of Sciences. 115 (51): 12878–12886. Bibcode:2018PNAS..11512878K. doi: 10.1073/pnas.1717159115 . PMC   6304978 . PMID   30559199.
  3. McLean, Angela Ruth (1995-09-22). "Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework". Proceedings of the Royal Society of London. Series B: Biological Sciences. 261 (1362): 389–393. Bibcode:1995RSPSB.261..389M. doi:10.1098/rspb.1995.0164. PMID   8587880. S2CID   24978821.
  4. Mclean, A. R (1998-01-01). "Vaccines and their impact on the control of disease". British Medical Bulletin. 54 (3): 545–556. doi: 10.1093/oxfordjournals.bmb.a011709 . ISSN   0007-1420. PMID   10326283.
  5. Graham, Andrea L.; Allen, Judith E.; Read, Andrew F. (2005-11-10). "Evolutionary Causes and Consequences of Immunopathology". Annual Review of Ecology, Evolution, and Systematics. 36 (1): 373–397. doi:10.1146/annurev.ecolsys.36.102003.152622. ISSN   1543-592X.
  6. Witter, R. L. (1997). "Increased Virulence of Marek's Disease Virus Field Isolates". Avian Diseases. 41 (1): 149–163. doi:10.2307/1592455. ISSN   0005-2086. JSTOR   1592455. PMID   9087332.
  7. Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K. (2015-07-27). "Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens". PLOS Biology. 13 (7): e1002198. doi:10.1371/journal.pbio.1002198. ISSN   1545-7885. PMC   4516275 . PMID   26214839.
  8. Austin, D.A.; Robertson, P.A.W.; Austin, B. (2003-01-01). "Recovery of a New Biogroup of Yersinia ruckeri from Diseased Rainbow Trout (Oncorhynchus mykiss, Walbaum)". Systematic and Applied Microbiology. 26 (1): 127–131. doi:10.1078/072320203322337416. ISSN   0723-2020. PMID   12747420.
  9. Welch, Timothy J.; Verner-Jeffreys, David W.; Dalsgaard, Inger; Wiklund, Thomas; Evenhuis, Jason P.; Garcia Cabrera, Jose A.; Hinshaw, Jeffrey M.; Drennan, John D.; Lapatra, Scott E. (2011). "Independent Emergence of Yersinia ruckeri Biotype 2 in the United States and Europe". Applied and Environmental Microbiology. 77 (10): 3493–3499. Bibcode:2011ApEnM..77.3493W. doi:10.1128/aem.02997-10. PMC   3126439 . PMID   21441334.
  10. Banet-Noach, Caroline; Simanov, Lubov; Laham-Karam, Nihay; Perk, Shimon; Bacharach, Eran (2009). "Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks". Avian Diseases. 53 (2): 184–189. doi:10.1637/8466-090408-Reg.1. ISSN   0005-2086. JSTOR   25599093. PMID   19630222. S2CID   21433553.
  11. Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J. (2010-01-22). "Field avian Metapneumovirus evolution avoiding vaccine induced immunity". Vaccine. 28 (4): 916–921. doi:10.1016/j.vaccine.2009.10.149. ISSN   0264-410X. PMID   19931381.
  12. Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J. (2010-11-20). "Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction". Veterinary Microbiology. 146 (1–2): 24–34. doi:10.1016/j.vetmic.2010.04.014. ISSN   0378-1135. PMID   20447777.
  13. Naylor, Clive J.; Ling, Roger; Edworthy, Nicole; Savage, Carol E.; Easton, Andrew J.YR 2007 (2007). "Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates". Journal of General Virology. 88 (6): 1767–1775. doi: 10.1099/vir.0.82755-0 . ISSN   1465-2099. PMID   17485538.
  14. Weinberger, Daniel M; Malley, Richard; Lipsitch, Marc (December 2011). "Serotype replacement in disease after pneumococcal vaccination". The Lancet. 378 (9807): 1962–1973. doi:10.1016/s0140-6736(10)62225-8. ISSN   0140-6736. PMC   3256741 . PMID   21492929.
  15. Brueggemann, Angela B.; Pai, Rekha; Crook, Derrick W.; Beall, Bernard (2007-11-16). "Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States". PLOS Pathogens. 3 (11): e168. doi:10.1371/journal.ppat.0030168. ISSN   1553-7374. PMC   2077903 . PMID   18020702.
  16. Carman, W.F.; Karayiannis, P.; Waters, J.; Thomas, H.C.; Zanetti, A.R.; Manzillo, G.; Zuckerman, A.J. (August 1990). "Vaccine-induced escape mutant of hepatitis B virus". The Lancet. 336 (8711): 325–329. doi:10.1016/0140-6736(90)91874-a. ISSN   0140-6736. PMID   1697396. S2CID   45479217.
  17. Zanetti, A.R.; Tanzi, E.; Manzillo, G.; Maio, G.; Sbreglia, C.; Caporaso, N.; Thomas, Howard; Zuckerman, ArieJ. (November 1988). "Hepatitis B Variant in Europe". The Lancet. 332 (8620): 1132–1133. doi:10.1016/s0140-6736(88)90541-7. ISSN   0140-6736. PMID   2460710. S2CID   2638727.
  18. Romanò, Luisa; Paladini, Sara; Galli, Cristina; Raimondo, Giovanni; Pollicino, Teresa; Zanetti, Alessandro R. (2015-01-01). "Hepatitis B vaccination". Human Vaccines & Immunotherapeutics. 11 (1): 53–57. doi:10.4161/hv.34306. ISSN   2164-5515. PMC   4514213 . PMID   25483515.
  19. Sheldon, J.; Soriano, V. (2008-02-04). "Hepatitis B virus escape mutants induced by antiviral therapy". Journal of Antimicrobial Chemotherapy. 61 (4): 766–768. doi: 10.1093/jac/dkn014 . ISSN   0305-7453. PMID   18218641.
  20. Mooi, F. R.; van Oirschot, H.; Heuvelman, K.; van der Heide, H. G.; Gaastra, W.; Willems, R. J. (February 1998). "Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution". Infection and Immunity. 66 (2): 670–675. doi:10.1128/IAI.66.2.670-675.1998. ISSN   0019-9567. PMC   107955 . PMID   9453625.
  21. Kallonen, Teemu; He, Qiushui (2009-07-01). "Bordetella pertussis strain variation and evolution postvaccination". Expert Review of Vaccines. 8 (7): 863–875. doi:10.1586/erv.09.46. ISSN   1476-0584. PMID   19538113. S2CID   22946846.
  22. Hegerle, Nicolas; Guiso, Nicole (2014-09-01). "Bordetella pertussis and pertactin-deficient clinical isolates: lessons for pertussis vaccines". Expert Review of Vaccines. 13 (9): 1135–1146. doi:10.1586/14760584.2014.932254. ISSN   1476-0584. PMID   24953157. S2CID   21534501.
  23. Safarchi, Azadeh; Octavia, Sophie; Luu, Laurence Don Wai; Tay, Chin Yen; Sintchenko, Vitali; Wood, Nicholas; Marshall, Helen; McIntyre, Peter; Lan, Ruiting (2015-11-17). "Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model". Vaccine. 33 (46): 6277–6281. doi:10.1016/j.vaccine.2015.09.064. ISSN   0264-410X. PMID   26432908.
  24. Lee, Chang-Won; Senne, Dennis A.; Suarez, David L. (2004). "Effect of Vaccine Use in the Evolution of Mexican Lineage H5N2 Avian Influenza Virus". Journal of Virology. 78 (15): 8372–8381. doi:10.1128/jvi.78.15.8372-8381.2004. PMC   446090 . PMID   15254209.
  25. Lu, Huaguang; Tang, Yi; Dunn, Patricia A.; Wallner-Pendleton, Eva A.; Lin, Lin; Knoll, Eric A. (2015-10-15). "Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014". Scientific Reports. 5 (1): 14727. Bibcode:2015NatSR...514727L. doi:10.1038/srep14727. ISSN   2045-2322. PMC   4606735 . PMID   26469681.
  26. Soubeyrand, Benoit; Plotkin, Stanley A. (June 2002). "Antitoxin vaccines and pathogen virulence". Nature. 417 (6889): 609–610. doi:10.1038/417609b. ISSN   1476-4687. PMID   12050654. S2CID   4408258.
  27. Radford, Alan D.; Dawson, Susan; Coyne, Karen P.; Porter, Carol J.; Gaskell, Rosalind M. (2006-10-05). "The challenge for the next generation of feline calicivirus vaccines". Veterinary Microbiology. 117 (1): 14–18. doi:10.1016/j.vetmic.2006.04.004. ISSN   0378-1135. PMID   16698199.
  28. Ribeiro, Guilherme S.; Reis, Joice N.; Cordeiro, Soraia M.; Lima, Josilene B. T.; Gouveia, Edilane L.; Petersen, Maya; Salgado, Kátia; Silva, Hagamenon R.; Zanella, Rosemeire Cobo; Almeida, Samanta C. Grassi; Brandileone, Maria Cristina (January 2003). "Prevention ofHaemophilus influenzaeType b (Hib) Meningitis and Emergence of Serotype Replacement with Type a Strains after Introduction of Hib Immunization in Brazil". The Journal of Infectious Diseases. 187 (1): 109–116. doi: 10.1086/345863 . ISSN   0022-1899. PMID   12508153.
  29. Berg, Thierry P. Van Den (2000-06-01). "Acute infectious bursal disease in poultry: A review". Avian Pathology. 29 (3): 175–194. doi:10.1080/03079450050045431. ISSN   0307-9457. PMID   19184804. S2CID   23178744.
  30. Kertesz, Daniel A.; Coulthart, Michael B.; Ryan, J. Alan; Johnson, Wendy M.; Ashton, Fraser E. (June 1998). "Serogroup B, Electrophoretic Type 15 Neisseria meningitidis in Canada". The Journal of Infectious Diseases. 177 (6): 1754–1757. doi: 10.1086/517439 . ISSN   0022-1899. PMID   9607865.
  31. Boven, Michiel van; Bouma, Annemarie; Fabri, Teun H. F.; Katsma, Elly; Hartog, Leo; Koch, Guus (2008-02-01). "Herd immunity to Newcastle disease virus in poultry by vaccination". Avian Pathology. 37 (1): 1–5. doi:10.1080/03079450701772391. ISSN   0307-9457. PMC   2556191 . PMID   18202943.
  32. Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele (2016-12-19). "Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study". Scientific Reports. 6 (1): 39458. Bibcode:2016NatSR...639458F. doi:10.1038/srep39458. ISSN   2045-2322. PMC   5171922 . PMID   27991573.