Tick-borne disease

Last updated
Tick-borne disease
Specialty Infectious disease

Tick-borne diseases, which afflict humans and other animals, are caused by infectious agents transmitted by tick bites. [1] They are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. [2] The economic impact of tick-borne diseases is considered to be substantial in humans, [3] and tick-borne diseases are estimated to affect ~80 % of cattle worldwide. [4]

Contents

As of 2020 18 tick-borne pathogens have been identified in the United States according to the Centers for Disease Control [5] and at least 27 are known globally. [6] [7] [8] New tick-borne diseases have been discovered in the 21st century, due in part to the use of molecular assays and next-generation sequencing. [9]

The occurrence of ticks and tick-borne illnesses in humans is increasing. [10] Tick populations are spreading into new areas, in part due to climate change. [6] [11] Tick populations are also affected by changes in the populations of their hosts (e.g. deer, cattle, mice, lizards) and those hosts' predators (e.g. foxes). Diversity and availability of hosts and predators can be affected by deforestation and habitat fragmentation. [6]

Because individual ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. [2] As the incidence of tick-borne illnesses increases and the geographic areas in which they are found expand, health workers increasingly must be able to distinguish the diverse, and often overlapping, clinical presentations of these diseases. [5]

Prevention

Exposure

A tick crawling on a human head in a wooded area near LeRoy, Michigan. Tick on human head.jpg
A tick crawling on a human head in a wooded area near LeRoy, Michigan.

Ticks tend to be more active during warmer months, though this varies by geographic region and climate. Areas with woods, bushes, high grass, or leaf litter are likely to have more ticks. Those bitten commonly experience symptoms such as body aches, fever, fatigue, joint pain, or rashes. People can limit their exposure to tick bites by wearing light-colored clothing (including pants and long sleeves), using insect repellent with 20%–30% N,N-Diethyl-3-methylbenzamide (DEET), tucking their pants legs into their socks, checking for ticks frequently, and washing and drying their clothing (in a hot dryer). [12] [13]

According to the World Health Organization, tick-to-animal transmission is difficult to prevent because animals do not show visible symptoms; the only effective prevention relies on killing ticks on the livestock production facility. [14]

Tick removal

Ticks should be removed as soon as safely possible once discovered. They can be removed either by grasping tweezers as close to the mouth as possible and pulling without rotation; some companies market grooved tools that rotate the hypostome to facilitate removal. Chemical methods to make the tick self-detach, or trying to pull the tick out with one’s fingers, are not efficient methods. [15]

Diagnosis

In general, specific laboratory tests are not available for rapid diagnosis of tick-borne diseases. Due to their seriousness, antibiotic treatment is often justified based on clinical presentation alone.

Assessing risk

For a person or pet to acquire a tick-borne disease requires that the individual gets bitten by a tick and that the tick feeds for a sufficient period of time. The feeding time required to transmit pathogens differs for different ticks and different pathogens. Transmission of the bacterium that causes Lyme disease is well understood to require a substantial feeding period. [16] In general, soft ticks (Argasidae) transmit pathogens within minutes of attachment because they feed more frequently, whereas hard ticks (Ixodidae) take hours or days, but the latter are more common and harder to remove. [15]

For an individual to acquire infection, the feeding tick must also be infected. Not all ticks are infected. In most places in the US, 30-50% of deer ticks will be infected with Borrelia burgdorferi (the agent of Lyme disease). Other pathogens are much more rare. Ticks can be tested for infection using a highly specific and sensitive qPCR procedure. Several commercial labs provide this service to individuals for a fee. The Laboratory of Medical Zoology (LMZ), a nonprofit lab at the University of Massachusetts, provides a comprehensive TickReport [17] for a variety of human pathogens and makes the data available to the public. [18] Those wishing to know the incidence of tick-borne diseases in their town or state can search the LMZ surveillance database. [18]

Examples

Major tick-borne diseases include:

Bacterial

Viral

Protozoan

Toxin

Allergies

See also

Related Research Articles

<span class="mw-page-title-main">Ixodidae</span> Family of ticks

The Ixodidae are the family of hard ticks or scale ticks, one of the three families of ticks, consisting of over 700 species. They are known as 'hard ticks' because they have a scutum or hard shield, which the other major family of ticks, the 'soft ticks' (Argasidae), lack. They are ectoparasites of a wide range of host species, and some are vectors of pathogens that can cause human disease.

<span class="mw-page-title-main">Lyme disease</span> Infectious disease caused by Borrelia bacteria, spread by ticks

Lyme disease, also known as Lyme borreliosis, is a vector-borne disease caused by the Borrelia bacterium, which is spread by ticks in the genus Ixodes. The most common sign of infection is an expanding red rash, known as erythema migrans, which appears at the site of the tick bite about a week afterwards. The rash is typically neither itchy nor painful. Approximately 70–80% of infected people develop a rash. Early diagnosis can be difficult. Other early symptoms may include fever, headaches and tiredness. If untreated, symptoms may include loss of the ability to move one or both sides of the face, joint pains, severe headaches with neck stiffness or heart palpitations. Months to years later repeated episodes of joint pain and swelling may occur. Occasionally shooting pains or tingling in the arms and legs may develop. Despite appropriate treatment about 10 to 20% of those affected develop joint pains, memory problems and tiredness for at least six months.

<span class="mw-page-title-main">Tick-borne encephalitis</span> Medical condition

Tick-borne encephalitis (TBE) is a viral infectious disease involving the central nervous system. The disease most often manifests as meningitis, encephalitis or meningoencephalitis. Myelitis and spinal paralysis also occurs. In about one third of cases sequelae, predominantly cognitive dysfunction, persists for a year or more.

<i>Borrelia burgdorferi</i> Species of bacteria

Borrelia burgdorferi is a bacterial species of the spirochete class in the genus Borrelia, and is one of the causative agents of Lyme disease in humans. Along with a few similar genospecies, some of which also cause Lyme disease, it makes up the species complex of Borrelia burgdorferi sensu lato. The complex currently comprises 20 accepted and 3 proposed genospecies. B. burgdorferi sensu stricto exists in North America and Eurasia and until 2016 was the only known cause of Lyme disease in North America. Borrelia species are Gram-negative.

<span class="mw-page-title-main">White-footed mouse</span> Species of mammal

The white-footed mouse is a rodent native to North America from Ontario, Quebec, Labrador, and the Maritime Provinces to the southwestern United States and Mexico. In the Maritimes, its only location is a disjunct population in southern Nova Scotia. It is also known as the woodmouse, particularly in Texas.

<i>Dermacentor variabilis</i> Species of tick

Dermacentor variabilis, also known as the American dog tick or wood tick, is a species of tick that is known to carry bacteria responsible for several diseases in humans, including Rocky Mountain spotted fever and tularemia. It is one of the best-known hard ticks. Diseases are spread when it sucks blood from the host. It may take several days for the host to experience symptoms.

Relapsing fever is a vector-borne disease caused by infection with certain bacteria in the genus Borrelia, which is transmitted through the bites of lice or soft-bodied ticks.

Powassan virus (POWV) is a Flavivirus transmitted by ticks, found in North America and in the Russian Far East. It is named after the town of Powassan, Ontario, where it was identified in a young boy who eventually died from it. It can cause encephalitis, an infection of the brain. No approved vaccine or antiviral drug exists. Prevention of tick bites is the best precaution.

<span class="mw-page-title-main">Lyme disease microbiology</span>

Lyme disease, or borreliosis, is caused by spirochetal bacteria from the genus Borrelia, which has 52 known species. Three main species are the main causative agents of the disease in humans, while a number of others have been implicated as possibly pathogenic. Borrelia species in the species complex known to cause Lyme disease are collectively called Borrelia burgdorferisensu lato (s.l.) not to be confused with the single species in that complex Borrelia burgdorferi sensu stricto which is responsible for nearly all cases of Lyme disease in North America.

Andrew Spielman, Sc.D. was a prominent American public health entomologist and Professor of Tropical Public Health in the Department of Immunology and Infectious Disease at the Harvard School of Public Health (HSPH).

<i>Ixodes scapularis</i> Species of tick

Ixodes scapularis is commonly known as the deer tick or black-legged tick, and in some parts of the US as the bear tick. It was also named Ixodes dammini until it was shown to be the same species in 1993. It is a hard-bodied tick found in the eastern and northern Midwest of the United States as well as in southeastern Canada. It is a vector for several diseases of animals, including humans and is known as the deer tick owing to its habit of parasitizing the white-tailed deer. It is also known to parasitize mice, lizards, migratory birds, etc. especially while the tick is in the larval or nymphal stage.

Powassan encephalitis, caused by the Powassan virus (POWV), a flavivirus also known as the deer tick virus, is a form of arbovirus infection that results from tick bites. It can occur as a co-infection with Lyme disease since both are transmitted to humans by the same species of tick. There has been a surge in the number of cases and geographic range in the last decade. In the United States, cases have been recorded in the northeast. The disease was first isolated from the brain of a boy who died of encephalitis in Powassan, Ontario, in 1958. The disease is a zoonosis, an animal disease, usually found in rodents and ticks, with spillover transmission to humans. The virus is antigenically related to the Far Eastern tick-borne encephalitis viruses.

<span class="mw-page-title-main">Southern tick-associated rash illness</span> Medical condition

Southern tick-associated rash illness (STARI) is an emerging infectious disease related to Lyme disease that occurs in southeastern and south-central United States. It is spread by tick bites and it was hypothesized that the illness was caused by the bacteria Borrelia lonestari. However, there is insufficient evidence to declare this Borrelia strain as a causative agent.

<span class="mw-page-title-main">Human granulocytic anaplasmosis</span> Medical condition

Human granulocytic anaplasmosis (HGA) is a tick-borne, infectious disease caused by Anaplasma phagocytophilum, an obligate intracellular bacterium that is typically transmitted to humans by ticks of the Ixodes ricinus species complex, including Ixodes scapularis and Ixodes pacificus in North America. These ticks also transmit Lyme disease and other tick-borne diseases.

<span class="mw-page-title-main">Human monocytotropic ehrlichiosis</span> Medical condition

Human monocytotropic ehrlichiosis is a form of ehrlichiosis associated with Ehrlichia chaffeensis. This bacterium is an obligate intracellular pathogen affecting monocytes and macrophages.

<span class="mw-page-title-main">Deer tick virus</span> Pathogenic member virus of Powassan virus

Deer tick virus (DTV) is a virus in the genus Flavivirus spread via ticks that causes encephalitis.

Borrelia miyamotoi is a bacterium of the spirochete phylum in the genus Borrelia. A zoonotic organism, B. miyamotoi can infect humans through the bite of several species of hard-shell Ixodes ticks, the same kind of ticks that spread B. burgdorferi, the causative bacterium of Lyme disease. Ixodes ticks are also the primary vector in the spread of babesiosis and anaplasmosis.

<i>Ixodes persulcatus</i> Species of tick

Ixodes persulcatus, the taiga tick, is a species of hard-bodied tick distributed from Europe through central and northern Asia to the People’s Republic of China and Japan. The sexual dimorphism of the species is marked, the male being much smaller than the female. Hosts include wild and domestic ungulates, man, dog, rabbit, and other small mammals, including the dormouse, Amur hedgehog, and occasionally birds.

Tibovirus is a term often used to describe viruses that are transmitted by tick vectors. The word tibovirus is an acronym. This falls within the superorder arthropod thus tibovirus is classified under Arthropod Borne virus (Arborvirus). For a person to acquire infection the tick must bite and feed for a sufficient period of time. The tiboviruses that affect humans are limited to within 3 families: Flaviviridae, Reoviridae, and Bunyaviridae.

Borrelia mayonii is a Gram-negative, host-associated spirochete that is capable of causing Lyme disease. This organism can infect various vertebrate and invertebrate hosts such as humans and ticks, primarily Ixodes scapularis. Migratory songbirds play a role in the dispersal of the tick vector, Ixodes scapularis, across long distances, indirectly dispersing Borrelia mayonii as well.

References

  1. Wenner M (11 June 2021). "Let's Do a Tick Check - These pervasive bloodsuckers can give you more than just Lyme disease. Here's how to protect yourself. (Interactive)". The New York Times . Retrieved 19 June 2021.
  2. 1 2 Kumar, Manish; Sharma, Aniket; Grover, Prashant (13 February 2019). "Triple Tick Attack". Cureus. 11 (2): e4064. doi:10.7759/cureus.4064. PMC   6464285 . PMID   31016091.
  3. Mac, Stephen; da Silva, Sara R.; Sander, Beate (4 January 2019). "The economic burden of Lyme disease and the cost-effectiveness of Lyme disease interventions: A scoping review". PLOS ONE. 14 (1): e0210280. doi: 10.1371/journal.pone.0210280 . ISSN   1932-6203. PMC   6319811 . PMID   30608986.
  4. Rochlin, Ilia; Toledo, Alvaro (1 June 2020). "Emerging tick-borne pathogens of public health importance: a mini-review". Journal of Medical Microbiology. 69 (6): 781–791. doi:10.1099/jmm.0.001206. ISSN   0022-2615. PMC   7451033 . PMID   32478654.
  5. 1 2 Tick-Borne Disease Working Group. 2020 Report to Congress (PDF). Washington, D.C.: U.S. Department of Health and Human Services. 2020. Retrieved 4 March 2022.
  6. 1 2 3 Chrobak, Ula (3 February 2022). "Lyme and other tick-borne diseases are on the rise. But why?". Knowable Magazine. doi: 10.1146/knowable-020222-1 . Retrieved 4 March 2022.
  7. Paddock, Christopher D.; Lane, Robert S.; Staples, J. Erin; Labruna, Marcelo B. (21 September 2016). Changing paradigms for tick-borne diseases in the Americas. National Academies Press (US). Retrieved 4 March 2022.
  8. Zhao, Guo-Ping; Wang, Yi-Xing; Fan, Zheng-Wei; Ji, Yang; Liu, Ming-jin; Zhang, Wen-Hui; Li, Xin-Lou; Zhou, Shi-Xia; Li, Hao; Liang, Song; Liu, Wei; Yang, Yang; Fang, Li-Qun (17 February 2021). "Mapping ticks and tick-borne pathogens in China". Nature Communications. 12 (1): 1075. doi:10.1038/s41467-021-21375-1. ISSN   2041-1723. PMC   7889899 . PMID   33597544 . Retrieved 4 March 2022.
  9. Tokarz, Rafal; Lipkin, W. Ian (1 July 2021). "Discovery and Surveillance of Tick-Borne Pathogens". Journal of Medical Entomology. 58 (4): 1525–1535. doi:10.1093/jme/tjaa269. ISSN   0022-2585. PMC   8285023 . PMID   33313662 . Retrieved 4 March 2022.
  10. "Lyme and Other Tickborne Diseases Increasing". Centers for Disease Control. 21 October 2021. Retrieved 4 March 2022.
  11. Gilbert, Lucy (7 January 2021). "The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk". Annual Review of Entomology. 66 (1): 373–388. doi:10.1146/annurev-ento-052720-094533. ISSN   0066-4170. PMID   33417823. S2CID   231300522 . Retrieved 4 March 2022.
  12. "Tick-Borne Diseases". cdc.gov. Centers for Disease Control and Prevention: National Institute for Occupational Safety and Health . Retrieved May 21, 2009.
  13. Rahlenbeck S, Fingerle V, Doggett S (September 2016). "Prevention of tick-borne diseases: an overview". The British Journal of General Practice. 66 (650): 492–494. doi:10.3399/bjgp16X687013. PMC   5198687 . PMID   27563139.
  14. "Crimean-Congo haemorrhagic fever". www.who.int. Retrieved 13 September 2021.
  15. 1 2 Pitches DW (August 2006). "Removal of ticks: a review of the literature". Euro Surveillance. 11 (8): E060817.4. doi: 10.2807/esw.11.33.03027-en . PMID   16966784.
  16. "TickEncounter Resource Center". University of Rhode Island.
  17. "TickReport". Laboratory of Medical Zoology. University of Massachusetts.
  18. 1 2 "Tick-Borne Disease Network". Laboratory of Medical Zoology. University of Massachusetts.
  19. Wolcott KA, Margos G, Fingerle V, Becker NS (September 2021). "Host association of Borrelia burgdorferi sensu lato: A review". Ticks and Tick-Borne Diseases. 12 (5): 101766. doi:10.1016/j.ttbdis.2021.101766. PMID   34161868.
  20. Mayo Clinic Staff. "Lyme disease: Symptoms". MayoClinic.com. Diseases and Conditions. Mayo Clinic.
  21. Mayo Clinic Staff. "Lyme disease: Treatments and drugs". MayoClinic.com. Diseases and Conditions. Mayo Clinic.
  22. Relapsing fever at eMedicine.
  23. Relapsing fever~treatment at eMedicine.
  24. 1 2 3 4 Lindblom A, Wallménius K, Nordberg M, Forsberg P, Eliasson I, Påhlson C, Nilsson K (March 2013). "Seroreactivity for spotted fever rickettsiae and co-infections with other tick-borne agents among habitants (sic) in central and southern Sweden". European Journal of Clinical Microbiology & Infectious Diseases. 32 (3): 317–323. doi:10.1007/s10096-012-1742-3. PMC   3569577 . PMID   22961007.
  25. Ben Beard C, Nelson CA, Mead PS, Petersen LR (November 2012). "Bartonella spp. Bacteremia and rheumatic symptoms in patients from lyme disease-endemic region". Emerging Infectious Diseases. 18 (11): 1918–1919. doi:10.3201/eid1811.120675. PMC   3559143 . PMID   23092626.
  26. Janecek E, Mietze A, Goethe R, Schnieder T, Strube C (October 2012). "Bartonella spp. infection rate and B. grahamii in ticks". Emerging Infectious Diseases. 18 (10): 1689–1690. doi:10.3201/eid1810.120390. PMC   3471628 . PMID   23017501.
  27. Dobler G (January 2010). "Zoonotic tick-borne flaviviruses". Veterinary Microbiology. Zoonoses: Advances and Perspectives. 140 (3–4): 221–228. doi:10.1016/j.vetmic.2009.08.024. PMID   19765917.
  28. "Powassan Virus | Powassan | CDC". www.cdc.gov. Retrieved 2017-06-07.
  29. Pastula DM, Turabelidze G, Yates KF, Jones TF, Lambert AJ, Panella AJ, et al. (March 2014). "Notes from the field: Heartland virus disease - United States, 2012-2013". MMWR. Morbidity and Mortality Weekly Report. 63 (12): 270–271. PMC   5779346 . PMID   24670929.
  30. "Chinese researchers highlight new tick-borne disease, Alongshan virus". CIDRAP - Center for Infectious Disease Research and Policy. Minneapolis, MN: University of Minnesota. May 29, 2019.
  31. "Ticks". medent.usyd.edu.au. Department of Entomology, University of Sydney and Westmead Hospital. November 7, 2003.
  32. Crispell, Gary; Commins, Scott P.; Archer-Hartman, Stephanie A.; Choudhary, Shailesh; Dharmarajan, Guha; Azadi, Parastoo; Karim, Shahid (17 May 2019). "Discovery of Alpha-Gal-Containing Antigens in North American Tick Species Believed to Induce Red Meat Allergy". Frontiers in Immunology. 10: 1056. https://doi.org/10.3389/fimmu.2019.01056. PMC 6533943. PMID 31156631