Rickettsiales

Last updated

Rickettsiales
Rickettsia rickettsii.jpg
Rickettsia rickettsii (red dots) in the cell of a deer tick
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Rickettsiales
Gieszczykiewicz 1939 (Approved Lists 1980)
Families
  • "Candidatus Deianiraeaceae" Castelli et al. 2019
  • Ehrlichiaceae Moshkovski 1945 (Approved Lists 1980)
  • "Candidatus Midichloriaceae" Montagna et al. 2013
  • Rickettsiaceae Pinkerton 1936 (Approved Lists 1980)
  • "Candidatus Tenuibacteraceae" Kroer et al. 2016
  • Genera incertae sedis
    • "Candidatus Anadelfobacter veles" Vannini et al. 2010
    • "Candidatus Repentibacter" corrig. Prokopchuk et al. 2019
    • "Sinorickettsia" Li et al. 2021 [1]

The Rickettsiales, informally called rickettsias, are an order of small Alphaproteobacteria. They are obligate intracellular parasites, and some are notable pathogens, including Rickettsia , which causes a variety of diseases in humans, and Ehrlichia , which causes diseases in livestock. Another genus of well-known Rickettsiales is the Wolbachia , which infect about two-thirds of all arthropods and nearly all filarial nematodes. [2] Genetic studies support the endosymbiotic theory according to which mitochondria and related organelles developed from members of this group. [3]

Contents

The Rickettsiales are difficult to culture, as they rely on living eukaryotic host cells for their survival.

Rickettsiales phylogeny

The Rickettsiales further consist of three known families, the Rickettsiaceae, the Midichloriaceae, and the Ehrlichiaceae. Most studies also support the inclusion of the Holosporaceae, but one study has challenged this view. [4] In that alternative, the Holosporaceae are the sole representatives of their own order, the Holosporales, and as such not part of the Rickettsiales (see the schematic tree below). Other lineages, not clearly part of any family, have been described, as well. Examples include Candidatus Arcanobacter lacustris [5] and Rickettsiales bacterium Ac37b.

Schematic ribosomal RNA phylogeny of Alphaproteobacteria
   Magnetococcidae   

  Magnetococcus marinus

The cladogram of Rickettsidae has been inferred by Ferla et al. [6] from the comparison of 16S + 23S ribosomal RNA sequences.

Phylogenetic relationship between Rickettsiales and Pelagibacterales (SAR11)

The phylogenetic relationship between these two groups has yet to reach consensus in the scientific literature.

Early reports suggested that they represented sister clades to each other. [7] [8] However, later studies suggested that this relationship is false and was due to a phylogenetic artefact, which artificially groups independent AT-rich and fast-evolving lineages (Rickettsiales and Pelagibacterales have both properties) together. [9] [10] Upon correcting for this artefact, the Pelagibacterales form a sister clade to the Hyphomicrobiales, Rhodobacterales and Caulobacterales instead.

Another study [4] adheres to the sister relationship between the two clades (see schematic tree). In their classification, the relation between the two orders is retained in the subclass, the Rickettsidae, which include the Rickettsiales, the Pelagibacteriales, and the extinct protomitochondrion (mitochondria themselves are not bacteria, but organelles). [4]

Reductive evolution

Rickettsiales genomes are undergoing reductive evolution and are typically small (generally < 1.5 Mbp), AT-rich (generally < 40% GC) with a low coding density (generally < 85%) and a relatively high number of pseudogenes. [11] Reduction in genome size, % GC and coding density and genes are generally attributed to genetic drift and Muller's ratchet. Genetic drift is enhanced in Rickettsiales genomes due to low population sizes (given their endosymbiotic nature) and frequent population bottlenecks. Similarly, Muller's ratchet is activated through the lack of recombination and horizontal gene transfer (the eukaryotic host cell is a natural barrier).

Related Research Articles

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. Meaning a thread-like granule, the term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 Scientific American article of the same name.

<span class="mw-page-title-main">Pseudomonadota</span> Phylum of Gram-negative bacteria

Pseudomonadota is a major phylum of Gram-negative bacteria. Currently, they are considered the predominant phylum within the realm of bacteria. They are naturally found as pathogenic and free-living (non-parasitic) genera. The phylum comprises six classes Acidithiobacillia, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Hydrogenophilia, and Zetaproteobacteria. The Pseudomonadota are widely diverse, with differences in morphology, metabolic processes, relevance to humans, and ecological influence.

<i>Rickettsia</i> Genus of bacteria

Rickettsia is a genus of nonmotile, gram-negative, nonspore-forming, highly pleomorphic bacteria that may occur in the forms of cocci, bacilli, or threads. The genus was named after Howard Taylor Ricketts in honor of his pioneering work on tick-borne spotted fever.

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of gram-negative bacteria infecting many species of arthropods and filarial nematodes. The symbiotic relationship ranges from parasitism to obligate mutualism. It is one of the most common parasitic microbes of arthropods, and is possibly the most widespread reproductive parasite bacterium in the biosphere. Its interactions with hosts are complex and highly diverse across different host species. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

<i>Candidatus Pelagibacter communis</i> Species of bacterium

"Candidatus Pelagibacter", with the single species "Ca. P. communis", was isolated in 2002 and given a specific name, although it has not yet been described as required by the bacteriological code. It is an abundant member of the SAR11 clade in the phylum Alphaproteobacteria. SAR11 members are highly dominant organisms found in both salt and fresh water worldwide and were originally known only from their rRNA genes, first identified in the Sargasso Sea in 1990 by Stephen Giovannoni's laboratory at Oregon State University and later found in oceans worldwide. "Ca. P. communis" and its relatives may be the most abundant organisms in the ocean, and quite possibly the most abundant bacteria in the entire world. It can make up about 25% of all microbial plankton cells, and in the summer they may account for approximately half the cells present in temperate ocean surface water. The total abundance of "Ca. P. communis" and relatives is estimated to be about 2 × 1028 microbes.

<span class="mw-page-title-main">Caulobacteraceae</span> Family of bacteria

Caulobacteraceae is a family of Pseudomonadota within the alpha subgroup. Like all Pseudomonadota, the Caulobacteraceae are gram-negative. Caulobacteraceae includes the genera Asticcacaulis, Brevundimonas, Phenylobacterium and Caulobacter.

<span class="mw-page-title-main">Rickettsiaceae</span> Family of bacteria

The Rickettsiaceae are a family of bacteria. The genus Rickettsia is the most prominent genus within the family. The bacteria that eventually formed the mitochondrion is believed to have originated from this family. Most human pathogens in this family are in genus Rickettsia. They spend part of their lifecycle in the bodies of arthropods such as ticks or lice, and are then transmitted to humans or other mammals by the bite of the arthropod. It contains Gram-negative bacteria, very sensitive to environmental exposure, thus is adapted to obligate intracellular infection. Rickettsia rickettsii is considered the prototypical infectious organism in the group.

<span class="mw-page-title-main">Genome size</span> Amount of DNA contained in a genome

Genome size is the total amount of DNA contained within one copy of a single complete genome. It is typically measured in terms of mass in picograms or less frequently in daltons, or as the total number of nucleotide base pairs, usually in megabases. One picogram is equal to 978 megabases. In diploid organisms, genome size is often used interchangeably with the term C-value.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

The proto-mitochondrion is the hypothetical ancestral bacterial endosymbiont from which all mitochondria in eukaryotes are thought to descend, after an episode of symbiogenesis which created the aerobic eukaryotes.

<span class="mw-page-title-main">Alphaproteobacteria</span> Class of bacteria

Alphaproteobacteria or α-proteobacteria, also called α-Purple bacteria in earlier literature, is a class of bacteria in the phylum Pseudomonadota. The Magnetococcales and Mariprofundales are considered basal or sister to the Alphaproteobacteria. The Alphaproteobacteria are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all Proteobacteria, its members are gram-negative, although some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable.

"Candidatus Midichloria" is a candidatus genus of Gram-negative, non-endospore-forming bacteria, with a bacillus shape around 0.45 μm in diameter and 1.2 μm in length. First described in 2004 with the temporary name IricES1, "Candidatus Midichloria" species are symbionts of several species of hard ticks. They live in the cells of the ovary of the females of this tick species. These bacteria have been observed in the mitochondria of the host cells, a trait that has never been described in any other symbiont of animals.

<i>Ehrlichia</i> Genus of bacteria

Ehrlichia is a genus of Rickettsiales bacteria that are transmitted to vertebrates by ticks. These bacteria cause the disease ehrlichiosis, which is considered zoonotic, because the main reservoirs for the disease are animals.

<i>Ehrlichia ewingii</i> Species of bacterium

Ehrlichia ewingii is a species of rickettsiales bacteria. It has recently been associated with human infection, and can be detected via PCR serological testing. The name Ehrlichia ewingii was proposed in 1992.

<span class="mw-page-title-main">Pelagibacterales</span> Order of bacteria

The Pelagibacterales are an order in the Alphaproteobacteria composed of free-living marine bacteria that make up roughly one in three cells at the ocean's surface. Overall, members of the Pelagibacterales are estimated to make up between a quarter and a half of all prokaryotic cells in the ocean.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.

The Pelagibacteraceae are a family in the Alphaproteobacteria composed of free-living marine bacteria.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

Reductive evolution is the process by which microorganisms remove genes from their genome. It can occur when bacteria found in a free-living state enter a restrictive state or are completely absorbed by another organism becoming intracellular (symbiogenesis). The bacteria will adapt to survive and thrive in the restrictive state by altering and reducing its genome to get rid of the newly redundant pathways that are provided by the host. In an endosymbiont or symbiogenesis relationship where both the guest and host benefit, the host can also undergo reductive evolution to eliminate pathways that are more efficiently provided for by the guest.

Siv Gun Elisabeth Andersson is a Swedish evolutionary biologist, professor of molecular evolution at Uppsala University. She is member of both the Royal Swedish Academy of Sciences and of Engineering. She is also Head of basic research at the Knut and Alice Wallenberg Foundation and has been co-director of the Swedish national center for large-scale research Science for Life Laboratory between 2017 and 2021. Her research focuses on the evolution of bacteria, mainly on intracellular parasites.

References

  1. Li D, Fang J, Wen B, Wua X (2021). "Molecular identification of a novel intracellular proteobacteria from scallop Chlamys farreri". Aquaculture. 539: 736565. Bibcode:2021Aquac.53936565L. doi:10.1016/j.aquaculture.2021.736565. S2CID   233921822.
  2. Werren JH, Baldo L, Clark ME (2008). "Wolbachia: master manipulators of invertebrate biology". Nature Reviews Microbiology. 6 (10): 741–51. doi:10.1038/nrmicro1969. PMID   18794912. S2CID   12816914.
  3. Thomas, S. (2016). Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development. Springer. p. 529. ISBN   978-3-319-46857-0.
  4. 1 2 3 Ferla, M. P.; Thrash, J. C.; Giovannoni, S. J.; Patrick, W. M. (2013). "New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability". PLOS ONE. 8 (12): e83383. Bibcode:2013PLoSO...883383F. doi: 10.1371/journal.pone.0083383 . PMC   3859672 . PMID   24349502.
  5. Martijn J, Schulz F, Zaremba-Niedzwiedzka K, et al. (2015). "Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution". The ISME Journal. 9 (11): 2373–85. Bibcode:2015ISMEJ...9.2373M. doi:10.1038/ismej.2015.46. PMC   4497978 . PMID   25848874.
  6. Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM (2013). "New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability". PLOS ONE. 8 (12): e83383. Bibcode:2013PLoSO...883383F. doi: 10.1371/journal.pone.0083383 . PMC   3859672 . PMID   24349502.
  7. Williams KP, Sobral BW, Dickerman AW (2007). "A robust species tree for the alphaproteobacteria". Journal of Bacteriology. 189 (13): 4578–86. doi:10.1128/JB.00269-07. PMC   1913456 . PMID   17483224.
  8. Thrash JC, Boyd A, Huggett MJ, et al. (2011). "Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade". Scientific Reports. 1: 13. Bibcode:2011NatSR...1E..13T. doi:10.1038/srep00013. PMC   3216501 . PMID   22355532.
  9. Viklund J, Ettema TJ, Andersson SG (2012). "Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade". Molecular Biology and Evolution. 29 (2): 599–615. doi:10.1093/molbev/msr203. PMID   21900598.
  10. Rodríguez-Ezpeleta N, Embley TM (2012). "The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria". PLOS ONE. 7 (1): e30520. Bibcode:2012PLoSO...730520R. doi: 10.1371/journal.pone.0030520 . PMC   3264578 . PMID   22291975.
  11. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG (2007). "Intracellular pathogens go extreme: genome evolution in the Rickettsiales". Trends in Genetics. 23 (10): 511–20. doi:10.1016/j.tig.2007.08.002. PMID   17822801.