Antibiotic prophylaxis

Last updated

Antibiotic prophylaxis refers to, for humans, the prevention of infection complications using antimicrobial therapy (most commonly antibiotics). Antibiotic prophylaxis in domestic animal feed mixes has been employed in America since at least 1970. [1]

Contents

For humans

Antibiotic prophylaxis is most commonly used prior to dental surgery, [2] but may be used in other cases, such as prior to sexual intercourse for patients who suffer from recurrent urinary tract infections. [3]

Even when sterile techniques are adhered to, surgical procedures can introduce bacteria and other microbes in the blood (causing bacteremia), which can colonize and infect different parts of the body. An estimated 5 to 10 percent of hospitalized patients undergoing otolaryngology ("head and neck") surgery acquire a nosocomial ("hospital") infection, which adds a substantial cost and an average of 4 extra days to the hospital stay.[ citation needed ]

Antibiotics can be effective in reducing the occurrence of such infections. Patients should be selected for prophylaxis if the medical condition or the surgical procedure is associated with a considerable risk of infection or if a postoperative infection would pose a serious hazard to the patient's recovery and well-being. [4]

Antibiotic prophylaxis is also commonly used to prevent respiratory tract infections in antibody deficient patients. [5]

Local wound infections (superficial or deep-sided), urinary tract infections (caused by a bladder catheter inserted for surgery), and pneumonia (due to impaired breathing/coughing, caused by sedation and analgesics during the first few hours of recovery) may endanger the health of patients after surgery. Visibly worse are postoperative bacterial infections at the site of implanted foreign bodies (sutures, osteosynthetic material, joint replacements, pacemaker implants, etc.) Often, the outcome of the procedure may be put into question and the life of the patient may even be put at risk.[ citation needed ]

Worldwide experience with antimicrobial prophylaxis in surgery has proven to be effective and cost-efficient, both avoiding severe patient suffering while saving lives (provided the appropriate antibiotics have been carefully chosen and used to the best of current medical knowledge).[ citation needed ]

Antibiotic selection

A proper regimen of antibiotics for perioperative prophylaxis of septic complications decreases the total amount of antimicrobials needed and eases the burden on hospitals. The choice of antibiotics should be made according to data on pharmacology, microbiology, clinical experience and economy. Drugs should be selected with a reasonable spectrum of activity against pathogens likely to be encountered, and antibiotics should be chosen with kinetics that will ensure adequate serum and tissue levels throughout the risk period. Depending on the type of surgery and anticipated contamination associated with it, combinations of different agents or different routes of administration (e.g. intravenous and oral antibiotics) might be beneficial in reducing perioperative adverse events. [6] [7]

For prophylaxis in surgery, only antibiotics with good tolerability should be used. Cephalosporins remain the preferred drugs for perioperative prophylaxis due to their low toxicity. Parenteral systemic antibiotics seem to be more appropriate than oral or topical antibiotics because the chosen antibiotics must reach high concentrations at all sites of danger. It is well recognized that broad-spectrum antibiotics are more likely to prevent gram-negative sepsis. New data demonstrate that third generation cephalosporins are more effective than first and second generation cephalosporins if all perioperative infectious complications are taken into consideration. Dermatologic surgeons commonly use antibiotic prophylaxis to prevent bacterial endocarditis. Based on previous studies, though, the risk of endocarditis following cutaneous surgery is low and thus the use of antibiotic prophylaxis is controversial. Although this practice is appropriate for high-risk patients when skin is contaminated, it is not recommended for noneroded, noninfected skin. [8]

There are many factors that affect physicians' compliance with guideline recommendations, including cultural factors, educational background, training, nurse and pharmacist influences, medication supply, and logistics.[ citation needed ]

The American Dental Association (ADA) recommends antibiotic prophylaxis for few people since only a small number of cases of endocarditis might be caused by dental procedures. [9]

Advantages of long-acting antibiotics

Long-acting, broad-spectrum antibiotics offer the following advantages by comparison to short-acting antimicrobials in perioperative prophylaxis:[ citation needed ]

There are many factors that affect physicians' compliance with guideline recommendations, including cultural factors, educational background, training, nurse and pharmacist influences, medication supply, and logistics.[ citation needed ]

American Heart Association recommendations

The American Heart Association (AHA) now recommends antibiotic prophylaxis for very few patients since only a small number of cases of endocarditis might be prevented by this procedure. [10]

For livestock

Antibiotic prophylaxis in domestic animal feed mixes has been employed in America since at least 1970. [1] Over time, the use of antibiotics for growth promotion purposes in livestock was discovered. In 1986, some European countries banned the use of antibiotics because of research they found that linked antibiotic use in livestock and drug resistant bacteria in humans. [11] The European Union regulated in 2006 against antibiotics for growth promotion purposes. [12]

It was estimated in 2014 that over 80% of the world's antibiotic use was on farms. [13] [12] Coccidiosis in fowl had evolved increased tolerance to the antibiotic feed. [12] The WHO warned in April 2014 that farm use was a contributor to superbugs in humans. [13] The Auditor General of Canada found lack of progress in 2014 on antimicrobial resistance despite three years of government funds that should have been used to implement a reduction programme. [12] A CBC writer was concerned that there was in Canada "no coordinated national system to control antibiotics in agriculture." [13]

Due to the serious problem of superbugs (which are bred in antibiotic-rich environments) the Food and Drug Administration issued a guidance document in December 2013. The chief public health officer of Canada said four months later that "antibiotics should only be used in animals to treat infection rather than guard against disease or promote growth." The Canadian guidance document calls for "the prudent use of antibiotics in animal agriculture and a gradual phasing out of growth promoting drugs in feed and water over the three years" ending in 2017. [14] Producers will no longer be allowed to continuously feed animals doses of antibiotics as a way to promote growth. [15] A veterinarian said that ""If you don't put (antibiotics) in the feed, and you wait until you get an outbreak of necrotic enteritis, you've got a lot of dead birds and you've lost a lot of money." [15] The Beef Cattle Research Council were irritated by the change, while the Chicken Farmers of Canada had pre-empted it by teamwork four years earlier. [14] However, concerns were raised by the Chief Veterinarian of Ontario that "In other jurisdictions, they've found that, the drugs are not used for growth promotion, wink, wink, they're used for disease prevention." [13]

As of 2016, Health Canada had approved for employment in cattle three natural hormones and three synthetic hormones. [11]

Related Research Articles

<span class="mw-page-title-main">Amoxicillin</span> Beta-lactam antibiotic

Amoxicillin is an antibiotic medication belonging to the aminopenicillin class of the penicillin family. The drug is used to treat bacterial infections such as middle ear infection, strep throat, pneumonia, skin infections, odontogenic infections, and urinary tract infections. It is taken by mouth, or less commonly by injection.

<span class="mw-page-title-main">Ciprofloxacin</span> Fluoroquinolone antibiotic

Ciprofloxacin is a fluoroquinolone antibiotic used to treat a number of bacterial infections. This includes bone and joint infections, intra-abdominal infections, certain types of infectious diarrhea, respiratory tract infections, skin infections, typhoid fever, and urinary tract infections, among others. For some infections it is used in addition to other antibiotics. It can be taken by mouth, as eye drops, as ear drops, or intravenously.

<span class="mw-page-title-main">Urinary tract infection</span> Infection that affects part of the urinary tract

A urinary tract infection (UTI) is an infection that affects a part of the urinary tract. When it affects the lower urinary tract it is known as a bladder infection (cystitis) and when it affects the upper urinary tract it is known as a kidney infection (pyelonephritis). Symptoms from a lower urinary tract infection include pain with urination, frequent urination, and feeling the need to urinate despite having an empty bladder. Symptoms of a kidney infection include fever and flank pain usually in addition to the symptoms of a lower UTI. Rarely the urine may appear bloody. In the very old and the very young, symptoms may be vague or non-specific.

Bloodstream infections (BSIs) are infections of blood caused by blood-borne pathogens. Blood is normally a sterile environment, so the detection of microbes in the blood is always abnormal. A bloodstream infection is different from sepsis, which is characterized by severe inflammatory or immune responses of the host organism to pathogens.

<span class="mw-page-title-main">Levofloxacin</span> Antibiotic

Levofloxacin, sold under the brand name Levaquin among others, is an antibiotic medication. It is used to treat a number of bacterial infections including acute bacterial sinusitis, pneumonia, H. pylori, urinary tract infections, chronic prostatitis, and some types of gastroenteritis. Along with other antibiotics it may be used to treat tuberculosis, meningitis, or pelvic inflammatory disease. Use is generally recommended only when other options are not available. It is available by mouth, intravenously, and in eye drop form.

<i>Klebsiella pneumoniae</i> Species of bacterium

Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, lactose-fermenting, facultative anaerobic, rod-shaped bacterium. It appears as a mucoid lactose fermenter on MacConkey agar.

<span class="mw-page-title-main">Infective endocarditis</span> Medical condition

Infective endocarditis is an infection of the inner surface of the heart, usually the valves. Signs and symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cell count. Complications may include backward blood flow in the heart, heart failure – the heart struggling to pump a sufficient amount of blood to meet the body's needs, abnormal electrical conduction in the heart, stroke, and kidney failure.

<span class="mw-page-title-main">Cefazolin</span> Antibiotic medication

Cefazolin, also known as cefazoline and cephazolin, is a first-generation cephalosporin antibiotic used for the treatment of a number of bacterial infections. Specifically it is used to treat cellulitis, urinary tract infections, pneumonia, endocarditis, joint infection, and biliary tract infections. It is also used to prevent group B streptococcal disease around the time of delivery and before surgery. It is typically given by injection into a muscle or vein.

Asplenia refers to the absence of normal spleen function and is associated with some serious infection risks. Hyposplenism is used to describe reduced ('hypo-') splenic functioning, but not as severely affected as with asplenism.

<span class="mw-page-title-main">Cefalexin</span> Beta-lactam antibiotic

Cefalexin, also spelled cephalexin, is an antibiotic that can treat a number of bacterial infections. It kills gram-positive and some gram-negative bacteria by disrupting the growth of the bacterial cell wall. Cefalexin is a β-lactam antibiotic within the class of first-generation cephalosporins. It works similarly to other agents within this class, including intravenous cefazolin, but can be taken by mouth.

<span class="mw-page-title-main">Cefotaxime</span> Chemical compound

Cefotaxime is an antibiotic used to treat a number of bacterial infections in human, other animals and plant tissue culture. Specifically in humans it is used to treat joint infections, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, sepsis, gonorrhea, and cellulitis. It is given either by injection into a vein or muscle.

<span class="mw-page-title-main">Norfloxacin</span> Chemical compound, antibiotic

Norfloxacin, sold under the brand name Noroxin among others, is an antibiotic that belongs to the class of fluoroquinolone antibiotics. It is used to treat urinary tract infections, gynecological infections, inflammation of the prostate gland, gonorrhea and bladder infection. Eye drops were approved for use in children older than one year of age.

<span class="mw-page-title-main">Cefadroxil</span> Antibiotic

Cefadroxil is a broad-spectrum antibiotic of the cephalosporin type, effective in Gram-positive and Gram-negative bacterial infections. It is a bactericidal antibiotic.

<span class="mw-page-title-main">Vesicoureteral reflux</span> Medical condition

Vesicoureteral reflux (VUR), also known as vesicoureteric reflux, is a condition in which urine flows retrograde, or backward, from the bladder into one or both ureters and then to the renal calyx or kidneys. Urine normally travels in one direction from the kidneys to the bladder via the ureters, with a one-way valve at the vesicoureteral (ureteral-bladder) junction preventing backflow. The valve is formed by oblique tunneling of the distal ureter through the wall of the bladder, creating a short length of ureter (1–2 cm) that can be compressed as the bladder fills. Reflux occurs if the ureter enters the bladder without sufficient tunneling, i.e., too "end-on".

<span class="mw-page-title-main">Cefoxitin</span> Chemical compound

Cefoxitin is a second-generation cephamycin antibiotic developed by Merck & Co., Inc. from Cephamycin C in the year following its discovery, 1972. It was synthesized in order to create an antibiotic with a broader spectrum. It is often grouped with the second-generation cephalosporins. Cefoxitin requires a prescription and as of 2010 is sold under the brand name Mefoxin by Bioniche Pharma, LLC. The generic version of cefoxitin is known as cefoxitin sodium.

<span class="mw-page-title-main">Antibiotic misuse</span>

Antibiotic misuse, sometimes called antibiotic abuse or antibiotic overuse, refers to the misuse or overuse of antibiotics, with potentially serious effects on health. It is a contributing factor to the development of antibiotic resistance, including the creation of multidrug-resistant bacteria, informally called "super bugs": relatively harmless bacteria can develop resistance to multiple antibiotics and cause life-threatening infections.

Dental antibiotic prophylaxis is the administration of antibiotics to a dental patient for prevention of harmful consequences of bacteremia, that may be caused by invasion of the oral flora into an injured gingival or peri-apical vessel during dental treatment.

Postoperative wounds are those wounds acquired during surgical procedures. Postoperative wound healing occurs after surgery and normally follows distinct bodily reactions: the inflammatory response, the proliferation of cells and tissues that initiate healing, and the final remodeling. Postoperative wounds are different from other wounds in that they are anticipated and treatment is usually standardized depending on the type of surgery performed. Since the wounds are 'predicted' actions can be taken beforehand and after surgery that can reduce complications and promote healing.

There are many circumstances during dental treatment where antibiotics are prescribed by dentists to prevent further infection. The most common antibiotic prescribed by dental practitioners is penicillin in the form of amoxicillin, however many patients are hypersensitive to this particular antibiotic. Therefore, in the cases of allergies, erythromycin is used instead.

Prosthetic joint infection (PJI), also known as peri-prosthetic joint infection (PJI), is an acute, sub-acute or chronic infection of a prosthetic joint. It may occur in the period after the joint replacement or many years later. It usually presents as joint pain, erythema, joint swelling and sometimes formation of a sinus tract. PJI is estimated to occur in approximately 2% of hip and knee replacements, and up to 4% of revision hip or knee replacements. Other estimates indicate that 1.4-2.5% of all joint replacements worldwide are complicated by PJIs. The incidence is expected to rise significantly in the future as hip replacements and knee replacements become more common. It is usually caused by aerobic gram positive bacteria, such as Staph epidermidis or Staphylococcus aureus but enterococcus species, gram negative organisms and Cutibacterium are also known causes with fungal infections being a rare culprit. The definitive diagnosis is isolation of the causative organism from the synovial fluid, but signs of inflammation in the joint fluid and imaging may also aid in the diagnosis. The treatment is a combination of systemic antibiotics, debridement of infectious and necrotic tissue and local antibiotics applied to the joint space. The bacteria that usually cause prosthetic joint infections commonly form a biofilm, or a thick slime that is adherent to the artificial joint surface, thus making treatment challenging.

References

  1. 1 2 Weichenthal, B. A.; Russell, H. G. (1970). Beef cattle feeding suggestions. hdl:2142/28536.
  2. "Antibiotic Prophylaxis". www.ada.org. Retrieved 2022-02-11.
  3. Ahmed, Haroon; Davies, Freya; Francis, Nick; Farewell, Daniel; Butler, Christoper; Paranjothy, Shantini (May 2017). "Long-term antibiotics for prevention of recurrent urinary tract infection in older adults: systematic review and meta-analysis of randomised trials". BMJ Open. 7 (5): e015233. doi:10.1136/bmjopen-2016-015233. PMC   5729980 . PMID   28554926.
  4. "Iv. Antimicrobial Prophylaxis". Archived from the original on 2002-10-18. Retrieved 2005-10-17.
  5. Grammatikos, Alexandros; Albur, Mahableshwar; Gompels, Mark; Barnaby, Catherine Louise; Allan, Susan; Johnston, Sarah (October 2020). "Antibiotic prophylaxis for the prevention of respiratory tract infections in antibody deficient patients: A retrospective cohort study". Clinical Infection in Practice. 7–8: 100048. doi: 10.1016/j.clinpr.2020.100048 . S2CID   228965989.
  6. Pellino, Gianluca; Espín-Basany, Eloy (17 December 2021). "Bowel decontamination before colonic and rectal surgery". British Journal of Surgery. 109 (1): 3–7. doi: 10.1093/bjs/znab389 . PMID   34849592.
  7. Espin Basany, Eloy; Solís-Peña, Alejandro; Pellino, Gianluca; Kreisler, Esther; Fraccalvieri, Doménico; Muinelo-Lorenzo, Manuel; Maseda-Díaz, Olga; García-González, José María; Santamaría-Olabarrieta, Marta; Codina-Cazador, Antonio; Biondo, Sebastiano (August 2020). "Preoperative oral antibiotics and surgical-site infections in colon surgery (ORALEV): a multicentre, single-blind, pragmatic, randomised controlled trial". The Lancet Gastroenterology & Hepatology. 5 (8): 729–738. doi:10.1016/S2468-1253(20)30075-3. PMID   32325012. S2CID   216109202.
  8. Scheinfeld, Noah; Struach, Shari; Ross, Bonnie (September 2002). "Antibiotic Prophylaxis Guideline Awareness and Antibiotic Prophylaxis Use Among New York State Dermatologic Surgeons". Dermatologic Surgery. 28 (9): 841–844. doi:10.1046/j.1524-4725.2002.02033.x. PMID   12269880. S2CID   42388624.
  9. "Antibiotic Prophylaxis Prior to Dental Procedures". American Dental Association. 23 March 2020. Retrieved 10 September 2020.
  10. Wilson, Walter; Taubert, Kathryn A.; Gewitz, Michael; Lockhart, Peter B.; Baddour, Larry M.; Levison, Matthew; Bolger, Ann; Cabell, Christopher H.; Takahashi, Masato; Baltimore, Robert S.; Newburger, Jane W.; Strom, Brian L.; Tani, Lloyd Y.; Gerber, Michael; Bonow, Robert O.; Pallasch, Thomas; Shulman, Stanford T.; Rowley, Anne H.; Burns, Jane C.; Ferrieri, Patricia; Gardner, Timothy; Goff, David; Durack, David T. (9 October 2007). "Prevention of Infective Endocarditis: Guidelines From the American Heart Association: A Guideline From the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group". Circulation. 116 (15): 1736–1754. doi: 10.1161/CIRCULATIONAHA.106.183095 . PMID   17446442.
  11. 1 2 revivewellness.ca: "Is Canadian Beef Hormone & Antibiotic Free?", April 17, 2016
  12. 1 2 3 4 globalnews.ca: "Medicating meat: What's Canada's plan for animal antibiotics?", 08/06/2014
  13. 1 2 3 4 cbc.ca: "Health Canada's quiet move to end use of antibiotics to fatten up animals", 09/07/2014
  14. 1 2 producer.com: "Health Canada tightens antibiotic use", 17/04/2014
  15. 1 2 ctvnews.ca: "Health Canada restricts use of growth-promoting antibiotics in livestock", 12/07/2014

Further reading