Postoperative wounds

Last updated

Postoperative wounds are those wounds acquired during surgical procedures. Postoperative wound healing occurs after surgery and normally follows distinct bodily reactions: the inflammatory response, the proliferation of cells and tissues that initiate healing, and the final remodeling. Postoperative wounds are different from other wounds in that they are anticipated and treatment is usually standardized depending on the type of surgery performed. Since the wounds are 'predicted' actions can be taken beforehand and after surgery that can reduce complications and promote healing.[ citation needed ]

Contents

Healing sequence

The body responds to postoperative wounds in the same manner as it does to tissue damage acquired in other circumstances. The inflammatory response is designed to create homeostasis. This first step is called the inflammatory stage. [1] The next stage and wound healing is the infiltration of leukocytes and release of cytokines into the tissue. The inflammatory response and the infiltration of leukocytes occur simultaneously. The final stage of postoperative wound healing is called remodeling. Remodeling restores the structure of the tissue and that tissues ability to regain its function.

Diagnosis

Surgical wounds can begin to open between three and five days after surgery. The wound usually appears red and can be accompanied by drainage. Clinicians delay re-opening the wound unless it is necessary due to the potential of other complications. If the surgical wound worsens, or if a rupture of the digestive system is suspected the decision may be to investigate the source of the drainage or infection. [2] [3]

Complications

Wound dehiscence

The rates of a surgical wound opening after surgery has remained constant. When a wound opens after surgery, the hospital stay becomes longer and the medical care becomes more intensive if a surgical wound opens after surgery. [2]

Infection

Infection will complicate healing of surgical wounds and is commonly observed. [2] [4] Most infections are present within the first 30 days after surgery. [5] Surgical wounds can become infected by bacteria, regardless if the bacteria is already present on the patient's skin or if the bacteria is spread to the patient due to contact with infected individuals. [5] Wound infections can be superficial (skin only), deep (muscle and tissue), or spread to the organ or space where the surgery occurred. [5] Recent studies have established that infection after surgery can occur after several years post surgery, and these infection rates are not recorded due to loss in patient follow up, hard to access record of previous surgery, visiting a new surgeon, lack of requirement from national registries etc. [6] [7]

Fascia dehiscence

The surgical site or wound may allow the passage of air into the body. This most often occurs after abdominal and pelvic surgery. Treatment at this point becomes more complex depending upon the extent of the opening, where it occurs and if contents of the digestive system have entered the body. [2]

Risks

The risk of complications of the surgical wound is greater for those greater than 65-years-old, or who have pulmonary disease, nutritional deficiencies, overweight, other illnesses and high blood pressure. [2]

Prevention

Complications of postsurgical wounds can be reduced before, during and after surgery.

Some measures such as antibiotic prophylaxis before caesarean section and hernial repair are useful in reducing surgical site infection. Intravenous prophylactic antibiotics are recommended, to be administered within one hour from the beginning of the surgical procedure. [8] In addition to i.v. prophylaxis, oral antibiotic prophylaxis has been demonstrated to be beneficial in reducing surgical site infections after elective large bowel surgery. [9] [10] Adding a mechanical bowel cleansing in these patients might not be beneficial after colonic resection, but is still used and recommended by many before rectal resection (ideally in combination with oral antibiotics) [10] [11] [12] However, some options include antibiotic coated sutures, antibiotic impregnated cement or locally administered paste or gel. [13] [14] [15] [16] Of note, a recent randomised controlled trial performed in low- and middle-income countries did not report any reduction in surgical site infection after abdominal surgery with antiseptic (triclosan-coated) sutures. [17] There is also evidence that adhesive tapes increase infection risks. [18]

Before surgery, clinicians can treat the patient to reduce hemoglobin A1c levels to less than 7%. Those anticipating surgery can reduce their risk of complications by stopping smoking thirty days prior to surgery. The patient's skin can be evaluated for the presence of Staphylococcus aureus prior to surgery since this bacterium causes wound infections in postoperative wounds. Treating any other infections prior to surgery also reduces the risks of a postoperative wound infection. Examples of these pre-existing infections are urinary tract infection or lower reproductive system infection. Removing the hair where the skin will be cut helps to reduce the risk of complications, though shaving is not considered to be appropriate and instead depilatories are used. Those who come in contact with the person who is receiving the surgery clean and disinfect their own skin surfaces. The patient's skin is also cleaned, scrubbed and treated with antiseptics. Patients undergoing surgery often receive antibiotics before surgery. [2]

During the surgery, there are several precautions that can be taken to reduce the risk of postoperative wound complications. These are: minimizing traffic in the operating room, providing adequate ventilation, not closing wounds that are infected, minimize tissue handling, re-administer prophylactic antibiotics if large amounts of fluid are lost during surgery, and keeping the patient warm. [2] Lately, studies have highlighted new preventative measures of avoiding repeated reprocessing and intraoperatively guarding the implants in the sterile-field, for surgeries implanting single-use devices such as orthopedic and spine surgeries. [19] [20] [21] [22] [23] [24] [25]

The risk of complications after surgery can be reduced by: maintaining blood glucose levels in the normal range and constant evaluation of surgical site infection. [2] [26]

There is insufficient evidence to show that whether applying cyanoacrylate microbial sealants on the wound site before operation is effective in reducing surgical site infection post surgery. [27]

There is no evidence that one type of hand antisepsis is better than the other in preventing surgical site infection. [28] [17]

There is no evidence that plastic adhesive tapes reduces surgical site infections. [29]

See also

Related Research Articles

The term abdominal surgery broadly covers surgical procedures that involve opening the abdomen (laparotomy). Surgery of each abdominal organ is dealt with separately in connection with the description of that organ Diseases affecting the abdominal cavity are dealt with generally under their own names.

<span class="mw-page-title-main">Surgery</span> Medical procedures that involve incisive or invasive instruments into body cavities

Surgery is a medical specialty that uses manual and instrumental techniques to diagnose or treat pathological conditions, to alter bodily functions, to reconstruct or improve aesthetics and appearance, or to remove unwanted tissues or foreign bodies.

<span class="mw-page-title-main">Cholecystectomy</span> Surgical removal of the gallbladder

Cholecystectomy is the surgical removal of the gallbladder. Cholecystectomy is a common treatment of symptomatic gallstones and other gallbladder conditions. In 2011, cholecystectomy was the eighth most common operating room procedure performed in hospitals in the United States. Cholecystectomy can be performed either laparoscopically, or via an open surgical technique.

<span class="mw-page-title-main">Percutaneous endoscopic gastrostomy</span> Feeding tube going into the stomach through the abdominal wall

Percutaneous endoscopic gastrostomy (PEG) is an endoscopic medical procedure in which a tube is passed into a patient's stomach through the abdominal wall, most commonly to provide a means of feeding when oral intake is not adequate. This provides enteral nutrition despite bypassing the mouth; enteral nutrition is generally preferable to parenteral nutrition. The PEG procedure is an alternative to open surgical gastrostomy insertion, and does not require a general anesthetic; mild sedation is typically used. PEG tubes may also be extended into the small intestine by passing a jejunal extension tube through the PEG tube and into the jejunum via the pylorus.

Perioperative mortality has been defined as any death, regardless of cause, occurring within 30 days after surgery in or out of the hospital. Globally, 4.2 million people are estimated to die within 30 days of surgery each year. An important consideration in the decision to perform any surgical procedure is to weigh the benefits against the risks. Anesthesiologists and surgeons employ various methods in assessing whether a patient is in optimal condition from a medical standpoint prior to undertaking surgery, and various statistical tools are available. ASA score is the most well known of these.

<span class="mw-page-title-main">Colectomy</span> Operation to remove all or part of the colon

Colectomy is the surgical removal of any extent of the colon, the longest portion of the large bowel. Colectomy may be performed for prophylactic, curative, or palliative reasons. Indications include cancer, infection, infarction, perforation, and impaired function of the colon. Colectomy may be performed open, laparoscopically, or robotically. Following removal of the bowel segment, the surgeon may restore continuity of the bowel or create a colostomy. Partial or subtotal colectomy refers to removing a portion of the colon, while total colectomy involves the removal of the entire colon. Complications of colectomy include anastomotic leak, bleeding, infection, and damage to surrounding structures.

<span class="mw-page-title-main">Bone grafting</span> Bone transplant

Bone grafting is a surgical procedure that replaces missing bone in order to repair bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly. Some small or acute fractures can be cured without bone grafting, but the risk is greater for large fractures like compound fractures.

<span class="mw-page-title-main">Dental extraction</span> Operation to remove a tooth

A dental extraction is the removal of teeth from the dental alveolus (socket) in the alveolar bone. Extractions are performed for a wide variety of reasons, but most commonly to remove teeth which have become unrestorable through tooth decay, periodontal disease, or dental trauma, especially when they are associated with toothache. Sometimes impacted wisdom teeth cause recurrent infections of the gum (pericoronitis), and may be removed when other conservative treatments have failed. In orthodontics, if the teeth are crowded, healthy teeth may be extracted to create space so the rest of the teeth can be straightened.

Knee replacement, also known as knee arthroplasty, is a surgical procedure to replace the weight-bearing surfaces of the knee joint to relieve pain and disability, most commonly offered when joint pain is not diminished by conservative sources. It may also be performed for other knee diseases, such as rheumatoid arthritis. In patients with severe deformity from advanced rheumatoid arthritis, trauma, or long-standing osteoarthritis, the surgery may be more complicated and carry higher risk. Osteoporosis does not typically cause knee pain, deformity, or inflammation, and is not a reason to perform knee replacement.

Antibiotic prophylaxis refers to, for humans, the prevention of infection complications using antimicrobial therapy. Antibiotic prophylaxis in domestic animal feed mixes has been employed in America since at least 1970.

<span class="mw-page-title-main">Spinal fusion</span> Immobilization or ankylosis of two or more vertebrae by fusion of the vertebral bodies

Spinal fusion, also called spondylodesis or spondylosyndesis, is a surgery performed by orthopaedic surgeons or neurosurgeons that joins two or more vertebrae. This procedure can be performed at any level in the spine and prevents any movement between the fused vertebrae. There are many types of spinal fusion and each technique involves using bone grafting—either from the patient (autograft), donor (allograft), or artificial bone substitutes—to help the bones heal together. Additional hardware is often used to hold the bones in place while the graft fuses the two vertebrae together. The placement of hardware can be guided by fluoroscopy, navigation systems, or robotics.

An incisional hernia is a type of hernia caused by an incompletely-healed surgical wound. Since median incisions in the abdomen are frequent for abdominal exploratory surgery, ventral incisional hernias are often also classified as ventral hernias due to their location. Not all ventral hernias are from incisions, as some may be caused by other trauma or congenital problems.

Failed Back Syndrome is a condition characterized by chronic pain following back surgeries. The term "post-laminectomy syndrome" is sometimes used by doctors to indicate the same condition as failed back syndrome. Many factors can contribute to the onset or development of FBS, including residual or recurrent spinal disc herniation, persistent post-operative pressure on a spinal nerve, altered joint mobility, joint hypermobility with instability, scar tissue (fibrosis), depression, anxiety, sleeplessness, spinal muscular deconditioning and Cutibacterium acnes infection. An individual may be predisposed to the development of FBS due to systemic disorders such as diabetes, autoimmune disease and peripheral blood vessels (vascular) disease.

<span class="mw-page-title-main">Endophthalmitis</span> Medical condition

Endophthalmitis, or endophthalmia, is inflammation of the interior cavity of the eye, usually caused by an infection. It is a possible complication of all intraocular surgeries, particularly cataract surgery, and can result in loss of vision or loss of the eye itself. Infection can be caused by bacteria or fungi, and is classified as exogenous, or endogenous. Other non-infectious causes include toxins, allergic reactions, and retained intraocular foreign bodies. Intravitreal injections are a rare cause, with an incidence rate usually less than 0.05%.

An open fracture, also called a compound fracture, is a type of bone fracture that has an open wound in the skin near the fractured bone. The skin wound is usually caused by the bone breaking through the surface of the skin. An open fracture can be life threatening or limb-threatening due to the risk of a deep infection and/or bleeding. Open fractures are often caused by high energy trauma such as road traffic accidents and are associated with a high degree of damage to the bone and nearby soft tissue. Other potential complications include nerve damage or impaired bone healing, including malunion or nonunion. The severity of open fractures can vary. For diagnosing and classifying open fractures, Gustilo-Anderson open fracture classification is the most commonly used method. This classification system can also be used to guide treatment, and to predict clinical outcomes. Advanced trauma life support is the first line of action in dealing with open fractures and to rule out other life-threatening condition in cases of trauma. The person is also administered antibiotics for at least 24 hours to reduce the risk of an infection.

Breast surgery is a form of surgery performed on the breast.

<span class="mw-page-title-main">Vaginal evisceration</span>

Vaginal evisceration is an evisceration of the small intestine that occurs through the vagina, typically subsequent to vaginal hysterectomy, and following sexual intercourse after the surgery. It is a surgical emergency.

Alloplasty is a surgical procedure performed to substitute and repair defects within the body with the use of synthetic material. It can also be performed in order to bridge wounds. The process of undergoing alloplasty involves the construction of an alloplastic graft through the use of computed tomography (CT), rapid prototyping and "the use of computer-assisted virtual model surgery." Each alloplastic graft is individually constructed and customised according to the patient's defect to address their personal health issue. Alloplasty can be applied in the form of reconstructive surgery. An example where alloplasty is applied in reconstructive surgery is in aiding cranial defects. The insertion and fixation of alloplastic implants can also be applied in cosmetic enhancement and augmentation. Since the inception of alloplasty, it has been proposed that it could be a viable alternative to other forms of transplants. The biocompatibility and customisation of alloplastic implants and grafts provides a method that may be suitable for both minor and major medical cases that may have more limitations in surgical approach. Although there has been evidence that alloplasty is a viable method for repairing and substituting defects, there are disadvantages including suitability of patient bone quality and quantity for long term implant stability, possibility of rejection of the alloplastic implant, injuring surrounding nerves, cost of procedure and long recovery times. Complications can also occur from inadequate engineering of alloplastic implants and grafts, and poor implant fixation to bone. These include infection, inflammatory reactions, the fracture of alloplastic implants and prostheses, loosening of implants or reduced or complete loss of osseointegration.

Transvaginal mesh, also known as vaginal mesh implant, is a net-like surgical tool that is used to treat pelvic organ prolapse (POP) and stress urinary incontinence (SUI) among female patients. The surgical mesh is placed transvaginally to reconstruct weakened pelvic muscle walls and to support the urethra or bladder.

A surgical site infection (SSI) develop when bacteria infiltrate the body through surgical incisions. These bacteria may come from the patient's own skin, the surgical instruments, or the environment in which the procedure is performed.

References

  1. Stadelmann WK, Digenis AG, Tobin GR (August 1998). "Physiology and healing dynamics of chronic cutaneous wounds". American Journal of Surgery. 176 (2A Suppl): 26S–38S. doi:10.1016/S0002-9610(98)00183-4. PMID   9777970.
  2. 1 2 3 4 5 6 7 8 Hoffman B (2012). Williams gynecology. New York: McGraw-Hill Medical. pp. 972–975. ISBN   9780071716727.
  3. Stanirowski PJ, Wnuk A, Cendrowski K, Sawicki W (October 2015). "Growth factors, silver dressings and negative pressure wound therapy in the management of hard-to-heal postoperative wounds in obstetrics and gynecology: a review". Archives of Gynecology and Obstetrics. 292 (4): 757–775. doi:10.1007/s00404-015-3709-y. PMC   4560760 . PMID   25864095.
  4. Pahys JM, Pahys JR, Cho SK, Kang MM, Zebala LP, Hawasli AH, et al. (March 2013). "Methods to decrease postoperative infections following posterior cervical spine surgery". The Journal of Bone and Joint Surgery. American Volume. 95 (6): 549–554. doi:10.2106/JBJS.K.00756. PMID   23515990. S2CID   207283208.
  5. 1 2 3 "Surgical wound infection - treatment". MedlinePlus Medical Encyclopedia. U.S. National Library of Medicine. Retrieved 2017-02-07.
  6. Agarwal A, Kelkar A, Agarwal AG, Jayaswal D, Schultz C, Jayaswal A, et al. (August 2020). "Implant Retention or Removal for Management of Surgical Site Infection After Spinal Surgery". Global Spine Journal. 10 (5): 640–646. doi:10.1177/2192568219869330. PMC   7359681 . PMID   32677561.
  7. "The Hardest Decision Any Spine Surgeon Has to Make | Orthopedics This Week". ryortho.com. Retrieved 2020-08-24.
  8. World Health Organization WHO. "WHO Surgical Site infection Prevention Guidelines Web Appendix 25" (PDF). Retrieved 27 December 2021.
  9. Espin Basany E, Solís-Peña A, Pellino G, Kreisler E, Fraccalvieri D, Muinelo-Lorenzo M, et al. (August 2020). "Preoperative oral antibiotics and surgical-site infections in colon surgery (ORALEV): a multicentre, single-blind, pragmatic, randomised controlled trial". The Lancet. Gastroenterology & Hepatology. 5 (8): 729–738. doi:10.1016/S2468-1253(20)30075-3. PMID   32325012. S2CID   216109202.
  10. 1 2 Pellino G, Espín-Basany E (December 2021). "Bowel decontamination before colonic and rectal surgery". The British Journal of Surgery. 109 (1): 3–7. doi: 10.1093/bjs/znab389 . PMID   34849592.
  11. Nelson RL, Hassan M, Grant MD (December 2020). "Antibiotic prophylaxis in colorectal surgery: are oral, intravenous or both best and is mechanical bowel preparation necessary?". Techniques in Coloproctology. 24 (12): 1233–1246. doi:10.1007/s10151-020-02301-x. PMID   32734477. S2CID   220857409.
  12. Koskenvuo L, Lehtonen T, Koskensalo S, Rasilainen S, Klintrup K, Ehrlich A, et al. (September 2019). "Mechanical and oral antibiotic bowel preparation versus no bowel preparation for elective colectomy (MOBILE): a multicentre, randomised, parallel, single-blinded trial". Lancet. 394 (10201): 840–848. doi:10.1016/S0140-6736(19)31269-3. hdl: 10138/319567 . PMID   31402112. S2CID   199540216.
  13. Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, et al. (October 2006). "Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination?". Journal of the American College of Surgeons. 203 (4): 481–489. doi:10.1016/j.jamcollsurg.2006.06.026. PMID   17000391.
  14. Shahpari O, Mousavian A, Elahpour N, Malahias MA, Ebrahimzadeh MH, Moradi A (January 2020). "The Use of Antibiotic Impregnated Cement Spacers in the Treatment of Infected Total Joint Replacement: Challenges and Achievements". The Archives of Bone and Joint Surgery. 8 (1): 11–20. doi:10.22038/abjs.2019.42018.2141. PMC   7007713 . PMID   32090140.
  15. McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H (April 2011). "The role of topical antibiotics used as prophylaxis in surgical site infection prevention". The Journal of Antimicrobial Chemotherapy. 66 (4): 693–701. doi: 10.1093/jac/dkr009 . PMID   21393223.
  16. Kachel E, Moshkovitz Y, Sternik L, Sahar G, Grosman-Rimon L, Belotserkovsky O, et al. (October 2020). "Local prolonged release of antibiotic for prevention of sternal wound infections postcardiac surgery-A novel technology". Journal of Cardiac Surgery. 35 (10): 2695–2703. doi: 10.1111/jocs.14890 . PMID   32743813. S2CID   220940129.
  17. 1 2 Ademuyiwa, Adesoji O.; et al. (November 2021). "Reducing surgical site infections in low-income and middle-income countries (FALCON): a pragmatic, multicentre, stratified, randomised controlled trial". Lancet. 398 (10312): 1687–1699. doi:10.1016/S0140-6736(21)01548-8. PMC   8586736 . PMID   34710362.
  18. Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, et al. (Cochrane Wounds Group) (February 2018). "Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews". The Cochrane Database of Systematic Reviews. 2018 (2): CD012653. doi:10.1002/14651858.CD012653.pub2. PMC   6491077 . PMID   29406579.
  19. Agarwal A, Lin B, Agarwal AG, Elgafy H, Schultz C, Agarwal AK, et al. (October 2020). "A Multicenter Trial Demonstrating Presence or Absence of Bacterial Contamination at the Screw-Bone Interface Owing to Absence or Presence of Pedicle Screw Guard, Respectively, During Spinal Fusion". Clinical Spine Surgery. 33 (8): E364–E368. doi:10.1097/BSD.0000000000000976. PMID   32168115. S2CID   212707844.
  20. Agarwal A, MacMillan A, Goel V, Agarwal AK, Karas C (August 2018). "A Paradigm Shift Toward Terminally Sterilized Devices". Clinical Spine Surgery. 31 (7): 308–311. doi:10.1097/BSD.0000000000000675. PMID   29912733. S2CID   49303554.
  21. Agarwal A, Schultz C, Agarwal AK, Wang JC, Garfin SR, Anand N (April 2019). "Harboring Contaminants in Repeatedly Reprocessed Pedicle Screws". Global Spine Journal. 9 (2): 173–178. doi:10.1177/2192568218784298. PMC   6448207 . PMID   30984497.
  22. Agarwal A, Schultz C, Goel VK, Agarwal A, Anand N, Garfin SR, Wang JC (October 2018). "Implant Prophylaxis: The Next Best Practice Toward Asepsis in Spine Surgery". Global Spine Journal. 8 (7): 761–765. doi:10.1177/2192568218762380. PMC   6232723 . PMID   30443488.
  23. Agarwal A, Lin B, Elgafy H, Goel V, Karas C, Schultz C, et al. (2020). "Updates on Evidence-Based Practices to Reduce Preoperative and Intraoperative Contamination of Implants in Spine Surgery: A Narrative Review". Spine Surgery and Related Research. 4 (2): 111–116. doi:10.22603/ssrr.2019-0038. PMC   7217678 . PMID   32405555.
  24. Agarwal A, Lin B, Wang JC, Schultz C, Garfin SR, Goel VK, et al. (February 2019). "Efficacy of Intraoperative Implant Prophylaxis in Reducing Intraoperative Microbial Contamination". Global Spine Journal. 9 (1): 62–66. doi: 10.1177/2192568218780676 . PMC   6362554 . PMID   30775210.
  25. "Ban 'Reprocessing' of Spinal Surgery Screws, Experts Say". Medscape. Retrieved 2020-08-24.
  26. Xiong, Ze; Achavananthadith, Sippanat; Lian, Sophie; Madden, Leigh Edward; Ong, Zi Xin; Chua, Wisely; Kalidasan, Viveka; Li, Zhipeng; Liu, Zhu; Singh, Priti; Yang, Haitao (November 2021). "A wireless and battery-free wound infection sensor based on DNA hydrogel". Science Advances. 7 (47): eabj1617. doi:10.1126/sciadv.abj1617. PMC   8604401 . PMID   34797719.
  27. Wood C, Phillips C, et al. (Cochrane Wounds Group) (May 2016). "Cyanoacrylate microbial sealants for skin preparation prior to surgery". The Cochrane Database of Systematic Reviews. 2016 (5): CD008062. doi:10.1002/14651858.CD008062.pub4. PMC   9308063 . PMID   27191948.
  28. Tanner J, Dumville JC, Norman G, Fortnam M, et al. (Cochrane Wounds Group) (January 2016). "Surgical hand antisepsis to reduce surgical site infection". The Cochrane Database of Systematic Reviews. 2016 (1): CD004288. doi:10.1002/14651858.CD004288.pub3. PMC   8647968 . PMID   26799160.
  29. Webster J, Alghamdi A, et al. (Cochrane Wounds Group) (April 2015). "Use of plastic adhesive drapes during surgery for preventing surgical site infection". The Cochrane Database of Systematic Reviews. 2015 (4): CD006353. doi:10.1002/14651858.CD006353.pub4. PMC   6575154 . PMID   25901509.