Cellular adaptation

Last updated

In cell biology and pathophysiology, cellular adaptation refers to changes made by a cell in response to adverse or varying environmental changes. The adaptation may be physiologic (normal) or pathologic (abnormal).

Contents

Morphological adaptations observed at the cellular level include atrophy, hypertrophy, hyperplasia, and metaplasia. [1] In the medical context, outside of specialized branches of biomedicine, morphological adaptations are not always referenced to the fundamental cellular level, but are observed and assessed at the level of tissues and organs. Dysplasia is a process of cell change associated with cellular abnormality, which is not considered adaptive in the positive sense of adaptation.

Atrophy

Cellular atrophy is a decrease in cell size. If enough cells in an organ undergo atrophy the entire organ will decrease in size. Thymus atrophy during early human development (childhood) is an example of physiologic atrophy. Skeletal muscle atrophy is a common pathologic adaptation to skeletal muscle disuse (commonly called "disuse atrophy"). Tissue and organs especially susceptible to atrophy include skeletal muscle, cardiac muscle, secondary sex organs, and the brain. [2] [3]

Hypertrophy

Illustration of adipocytes of different sizes. In response to dietary excess energy intake, adipocytes adapt by increased storage of lipids, resulting in cellular hypertrophy. Adipocyte.png
Illustration of adipocytes of different sizes. In response to dietary excess energy intake, adipocytes adapt by increased storage of lipids, resulting in cellular hypertrophy.

Cellular hypertrophy is an increase in cell size and volume. If enough cells of an organ hypertrophy the whole organ will increase in size. Hypertrophy may involve an increase in intracellular protein as well as cytosol (intracellular fluid) and other cytoplasmic components. For example, adipocytes (fat cells) may expand in size by depositing more lipid within cytoplasmic vesicles. Thus in human adults, increases in body fat tissue occurs mostly by increases in the size of adipocytes, not by increases in the number of adipocytes. [4] Hypertrophy may be caused by mechanical signals (e.g., stretch) or trophic signals (e.g., growth factors). An example of physiologic hypertrophy is in skeletal muscle with sustained weight bearing exercise. An example of pathologic hypertrophy is in cardiac muscle as a result of hypertension. [5]

Hyperplasia

Hyperplasia is an increase in the number of cells. [6] It is the result of increased cell mitosis or division (also referred to as cell proliferation). The two types of physiologic hyperplasia are compensatory and hormonal. Compensatory hyperplasia permits tissue and organ regeneration. It is common in epithelial cells of the epidermis and intestine, liver hepatocytes, bone marrow cells, and fibroblasts. It occurs to a lesser extent in bone, cartilage, and smooth muscle cells. Hormonal hyperplasia occurs mainly in organs that depend on estrogen. For example, the estrogen-dependent uterine cells undergo hyperplasia and hypertrophy following pregnancy. Pathologic hyperplasia is an abnormal increase in cell division. A common pathologic hyperplasia in women occurs in the endometrium and is called endometriosis. [7]

Metaplasia

Metaplasia occurs when a cell of a certain type is replaced by another cell type, which may be less differentiated. It is a reversible process thought to be caused by stem cell reprogramming. Stem cells are found in epithelia and embryonic mesenchyme of connective tissue. A prominent example of metaplasia involves the changes associated with the respiratory tract in response to inhalation of irritants, such as smog or smoke. The bronchial cells convert from mucus-secreting, ciliated, columnar epithelium to non-ciliated, squamous epithelium incapable of secreting mucus. These transformed cells may become dysplastic or cancerous if the stimulus (e.g., cigarette smoking) is not removed. The most common example of metaplasia is Barrett's esophagus, when the non-keratinizing squamous epithelium of the esophagus undergoes metaplasia to become mucinous columnar cells, ultimately protecting the esophagus from acid reflux originating in the stomach. If stress persists, metaplasia can progress to dysplasia and eventually carcinoma; Barrett's esophagus, for example, can eventually progress to adenocarcinoma. [8]

Dysplasia

Dysplasia refers to abnormal changes in cellular shape, size, and/or organization. Dysplasia is not considered a true adaptation; rather, it is thought to be related to hyperplasia and is sometimes called "atypical hyperplasia". Tissues prone to dysplasia include cervical and respiratory epithelium, where it is strongly associated with the development of cancer; it may also be involved in the development of breast cancer. Although dysplasia is reversible, if stress persists, then dysplasia progresses to irreversible carcinoma. [9]

See also

Notes and references

  1. "Cellular Adaptation". The Lecturio Medical Concept Library. 26 October 2020. Retrieved 7 July 2021.
  2. "Cellular Adaptation". The Lecturio Medical Concept Library. 26 October 2020. Retrieved 7 July 2021.
  3. Miller M, Zachary J (17 February 2017). "Mechanisms and Morphology of Cellular Injury, Adaptation, and Death". Pathologic Basis of Veterinary Disease: 2–43.e19. doi:10.1016/B978-0-323-35775-3.00001-1. ISBN   9780323357753. PMC   7171462 .
  4. Hopkin, Michael (5 May 2008). "Fat cell numbers stay constant through adult life". Nature. Springer Nature: news.2008.800. doi: 10.1038/news.2008.800 . Archived from the original on 16 October 2019.
  5. Miller M, Zachary J (17 February 2017). "Mechanisms and Morphology of Cellular Injury, Adaptation, and Death". Pathologic Basis of Veterinary Disease: 2–43.e19. doi:10.1016/B978-0-323-35775-3.00001-1. ISBN   9780323357753. PMC   7171462 .
  6. "Hyperplasia: MedlinePlus Medical Encyclopedia". medlineplus.gov.
  7. Miller M, Zachary J (17 February 2017). "Mechanisms and Morphology of Cellular Injury, Adaptation, and Death". Pathologic Basis of Veterinary Disease: 2–43.e19. doi:10.1016/B978-0-323-35775-3.00001-1. ISBN   9780323357753. PMC   7171462 .
  8. Miller M, Zachary J (17 February 2017). "Mechanisms and Morphology of Cellular Injury, Adaptation, and Death". Pathologic Basis of Veterinary Disease: 2–43.e19. doi:10.1016/B978-0-323-35775-3.00001-1. ISBN   9780323357753. PMC   7171462 .
  9. Porth, Carol Mattson (2005). Pathophysiology : Concepts of Altered Health States (PDF) (7th ed.). Philadelphia, Pa: Lippencott, Williams & Wilkins. p. 105. ISBN   0-7817-4988-3. Archived from the original (PDF) on 29 December 2016. Retrieved 28 December 2016.

Related Research Articles

<span class="mw-page-title-main">Thymus</span> Endocrine gland

The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus is located in the upper front part of the chest, in the anterior superior mediastinum, behind the sternum, and in front of the heart. It is made up of two lobes, each consisting of a central medulla and an outer cortex, surrounded by a capsule.

<span class="mw-page-title-main">Tissue (biology)</span> Group of cells having similar appearance and performing the same function

In biology, tissue is a historically derived biological organizational level between cells and a complete organ. A tissue is therefore often thought of as an assembly of similar cells and their extracellular matrix from the same origin that together carry out a specific function. Organs are then formed by the functional grouping together of multiple tissues.

<span class="mw-page-title-main">Barrett's esophagus</span> Medical condition

Barrett's esophagus is a condition in which there is an abnormal (metaplastic) change in the mucosal cells lining the lower portion of the esophagus, from stratified squamous epithelium to simple columnar epithelium with interspersed goblet cells that are normally present only in the small intestine and large intestine. This change is considered to be a premalignant condition because it is associated with a high incidence of further transition to esophageal adenocarcinoma, an often-deadly cancer.

<span class="mw-page-title-main">Hypertrophy</span> Increase in the volume of an organ or tissue due to the enlargement of its component cells

Hypertrophy is the increase in the volume of an organ or tissue due to the enlargement of its component cells. It is distinguished from hyperplasia, in which the cells remain approximately the same size but increase in number. Although hypertrophy and hyperplasia are two distinct processes, they frequently occur together, such as in the case of the hormonally induced proliferation and enlargement of the cells of the uterus during pregnancy.

<span class="mw-page-title-main">Adipocyte</span> Cells that primarily compose adipose tissue, specialized in storing energy as fat

Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through adipogenesis. In cell culture, adipocyte progenitors can also form osteoblasts, myocytes and other cell types.

<span class="mw-page-title-main">Atrophy</span> Partial or complete wasting away of a part of the body

Atrophy is the partial or complete wasting away of a part of the body. Causes of atrophy include mutations, poor nourishment, poor circulation, loss of hormonal support, loss of nerve supply to the target organ, excessive amount of apoptosis of cells, and disuse or lack of exercise or disease intrinsic to the tissue itself. In medical practice, hormonal and nerve inputs that maintain an organ or body part are said to have trophic effects. A diminished muscular trophic condition is designated as atrophy. Atrophy is reduction in size of cell, organ or tissue, after attaining its normal mature growth. In contrast, hypoplasia is the reduction in the cellular numbers of an organ, or tissue that has not attained normal maturity.

<span class="mw-page-title-main">Myostatin</span> Mammalian and avian protein

Myostatin is a protein that in humans is encoded by the MSTN gene. Myostatin is a myokine that is produced and released by myocytes and acts on muscle cells to inhibit muscle growth. Myostatin is a secreted growth differentiation factor that is a member of the TGF beta protein family.

<span class="mw-page-title-main">Leukoplakia</span> Medical condition

Oral leukoplakia is a potentially malignant disorder affecting the oral mucosa. It is defined as "essentially an oral mucosal white lesion that cannot be considered as any other definable lesion." Oral leukoplakia is a white patch or plaque that develops in the oral cavity and is strongly associated with smoking. Leukoplakia is a firmly attached white patch on a mucous membrane which is associated with increased risk of cancer. The edges of the lesion are typically abrupt and the lesion changes with time. Advanced forms may develop red patches. There are generally no other symptoms. It usually occurs within the mouth, although sometimes mucosa in other parts of the gastrointestinal tract, urinary tract, or genitals may be affected.

<span class="mw-page-title-main">Hyperplasia</span> Increase in the amount of organic tissue that results from cell proliferation

Hyperplasia, or hypergenesis, is an enlargement of an organ or tissue caused by an increase in the amount of organic tissue that results from cell proliferation. It may lead to the gross enlargement of an organ, and the term is sometimes confused with benign neoplasia or benign tumor.

<span class="mw-page-title-main">Metaplasia</span> Medical condition

Metaplasia is the transformation of one differentiated cell type to another differentiated cell type. The change from one type of cell to another may be part of a normal maturation process, or caused by some sort of abnormal stimulus. In simplistic terms, it is as if the original cells are not robust enough to withstand their environment, so they transform into another cell type better suited to their environment. If the stimulus causing metaplasia is removed or ceases, tissues return to their normal pattern of differentiation. Metaplasia is not synonymous with dysplasia, and is not considered to be an actual cancer. It is also contrasted with heteroplasia, which is the spontaneous abnormal growth of cytologic and histologic elements. Today, metaplastic changes are usually considered to be an early phase of carcinogenesis, specifically for those with a history of cancers or who are known to be susceptible to carcinogenic changes. Metaplastic change is thus often viewed as a premalignant condition that requires immediate intervention, either surgical or medical, lest it lead to cancer via malignant transformation.

<span class="mw-page-title-main">Precancerous condition</span> Medical condition

A precancerous condition is a condition, tumor or lesion involving abnormal cells which are associated with an increased risk of developing into cancer. Clinically, precancerous conditions encompass a variety of abnormal tissues with an increased risk of developing into cancer. Some of the most common precancerous conditions include certain colon polyps, which can progress into colon cancer, monoclonal gammopathy of undetermined significance, which can progress into multiple myeloma or myelodysplastic syndrome. and cervical dysplasia, which can progress into cervical cancer. Bronchial premalignant lesions can progress to squamous cell carcinoma of the lung.

<span class="mw-page-title-main">Dysplasia</span> Abnormal development, at macroscopic or microscopical level

Dysplasia is any of various types of abnormal growth or development of cells or organs, and the abnormal histology or anatomical structure(s) resulting from such growth. Dysplasias on a mainly microscopic scale include epithelial dysplasia and fibrous dysplasia of bone. Dysplasias on a mainly macroscopic scale include hip dysplasia, myelodysplastic syndrome, and multicystic dysplastic kidney.

Hypoplasia is underdevelopment or incomplete development of a tissue or organ. Although the term is not always used precisely, it properly refers to an inadequate or below-normal number of cells. Hypoplasia is similar to aplasia, but less severe. It is technically not the opposite of hyperplasia. Hypoplasia is a congenital condition, while hyperplasia generally refers to excessive cell growth later in life.

<span class="mw-page-title-main">Glycogenic acanthosis</span> Medical condition

Glycogenic acanthosis are small raised white plaques commonly seen in the esophageal mucosa. It is seen incidentally in 3.5% of gastroscopies.

<span class="mw-page-title-main">Muscle hypertrophy</span> Enlargement or overgrowth of a muscle organ

Muscle hypertrophy or muscle building involves a hypertrophy or increase in size of skeletal muscle through a growth in size of its component cells. Two factors contribute to hypertrophy: sarcoplasmic hypertrophy, which focuses more on increased muscle glycogen storage; and myofibrillar hypertrophy, which focuses more on increased myofibril size. It is the primary focus of bodybuilding-related activities.

Epithelial dysplasia, a term becoming increasingly referred to as intraepithelial neoplasia, is the sum of various disturbances of epithelial proliferation and differentiation as seen microscopically. Individual cellular features of dysplasia are called epithelial atypia.

<span class="mw-page-title-main">Compensatory growth (organ)</span> Type of regenerative growth

Compensatory growth is a type of regenerative growth that can take place in a number of human organs after the organs are either damaged, removed, or cease to function. Additionally, increased functional demand can also stimulate this growth in tissues and organs. The growth can be a result of increased cell size or an increase in cell division or both. For instance, if one kidney is surgically removed, the cells of the other kidney divide at an increased rate. Eventually, the remaining kidney can grow until its mass approaches the combined mass of two kidneys. Along with the kidneys, compensatory growth has also been characterized in a number of other tissues and organs including:

Muscle memory has been used to describe the observation that various Muscle-related tasks seem to be easier to perform after previous practice, even if the task has not been performed in a while. It is as if the muscles “remember”. The term could relate to tasks as disparate as playing the Training Physique Muscle Dynamic American and weight-lifting, i.e., the observation that strength trained athletes experience a rapid return of muscle mass and strength even after long periods of inactivity.

A myokine is one of several hundred cytokines or other small proteins and proteoglycan peptides that are produced and released by skeletal muscle cells in response to muscular contractions. They have autocrine, paracrine and/or endocrine effects; their systemic effects occur at picomolar concentrations.

Microglandular hyperplasia (MGH) of the cervix is an epithelial benign abnormality (lesion) associated with gland proliferation. It can terminate in mature squamous metaplasia, and it is suspected reserve cells are involved in this process, perhaps in the form of reserve cell hyperplasia with glandular differentiation.