Arbovirus

Last updated
Arbovirus infection
Rift Valley fever tissue.jpg
Tissue infected with the Rift Valley fever virus
Specialty Infectious disease

Arbovirus is an informal name for any virus that is transmitted by arthropod vectors. The term arbovirus is a portmanteau word (arthropod-borne virus). [1] Tibovirus (tick-borne virus) is sometimes used to more specifically describe viruses transmitted by ticks, a superorder within the arthropods. [2] Arboviruses can affect both animals (including humans) and plants. [3] In humans, symptoms of arbovirus infection generally occur 3–15 days after exposure to the virus and last three or four days. The most common clinical features of infection are fever, headache, and malaise, but encephalitis and viral hemorrhagic fever may also occur. [4]

Contents

Signs and symptoms

The incubation period – the time between when infection occurs and when symptoms appear – varies from virus to virus, but is usually limited between 2 and 15 days for arboviruses. [5] The majority of infections, however, are asymptomatic. [6] Among cases in which symptoms do appear, symptoms tend to be non-specific, resembling a flu-like illness, and are not indicative of a specific causative agent. These symptoms include fever, headache, malaise, rash and fatigue. Rarely, vomiting and hemorrhagic fever may occur. The central nervous system can also be affected by infection, as encephalitis and meningitis are sometimes observed. [7] Prognosis is good for most people, but is poor in those who develop severe symptoms, with up to a 20% mortality rate in this population depending on the virus. The very young, elderly, pregnant women, and people with immune deficiencies are more likely to develop severe symptoms.[ citation needed ]

ArbovirusDisease(s) Incubation period SymptomsDuration of symptoms Complications Case fatality rate Vector(s)Primary host(s)Geographic distributionDoes infection provide lifelong immunity?
Dengue virus Dengue fever 3–14 daysAsymptomatic in most cases; fever, headache, rash, muscle, and joint pains7–10 days Shock, internal bleeding, and organ damage<1% with treatment, 1–5% without; about 25% in severe casesAedes mosquitoes, especially Aedes aegyptiHumansNear the equator globallyVaries [note 1]
Japanese encephalitis virus Japanese encephalitis 5–15 daysAsymptomatic in most cases; fever, headache, fatigue, nausea, and vomitingEncephalitis, seizures, paralysis, coma, and long-term brain damage20–30% in encephalitis cases Culex mosquitoes, especially Culex tritaeniorhynchus Domestic pigs and wading birds Southeast and East AsiaYes
Rift Valley fever virus Rift Valley fever 2–6 daysFever, headache, myalgia and liver abnormalities4–7 daysHemorrhagic fever, meningoencephalitis1% in humans; in pregnant livestock, 100% fatality rate for fetuses Culex tritaeniorhynchus and Aedes vexans Micropteropus pusillus and Hipposideros abae Eastern, Southern, and Western AfricaYes
Tick-borne encephalitis virus Tick-borne encephalitis 7–14 daysFever, headache, muscle pain, nausea, vomiting, meningitis, and encephalitisParalysis and long-term brain damage1–2% Ixodes scapularis , Ixodes ricinus , and Ixodes persulcatus Small rodentsEastern Europe and Southern RussiaYes
West Nile virus West Nile fever, encephalitis2–15 daysAsymptomatic in most cases; fever, headache, fatigue, nausea, vomiting, rash3–6 daysSwollen lymph nodes, meningitis, encephalitis, acute flaccid paralysis 3–15% in severe cases Culex mosquitoes Passerine birdsNorth America, Europe, West and Central Asia, Oceania, and AfricaYes
Yellow fever virus Yellow fever 3–6 daysFever, headache, back pain, loss of appetite, nausea, and vomiting3–4 daysJaundice, liver damage, gastrointestinal bleeding, recurring fever3% in general; 20% in cases with severe complications Aedes mosquitoes, especially Aedes aegypti Primates Tropical and subtropical regions of South America and AfricaYes
  1. Infection provides lifelong immunity to the specific serotype causing illness, but temporary immunity to other serotypes.

Cause

Transmission

Many female mosquitoes, like those of Aedes albopictus, require a vertebrate blood meal in order for their eggs to develop. Aedes Albopictus.jpg
Many female mosquitoes, like those of Aedes albopictus , require a vertebrate blood meal in order for their eggs to develop.

Arboviruses maintain themselves in nature by going through a cycle between a host, an organism that carries the virus, and a vector, an organism that carries and transmits the virus to other organisms. [9] For arboviruses, vectors are commonly mosquitoes, ticks, sandflies [10] and other arthropods that consume the blood of vertebrates for nutritious or developmental purposes. [11] Vertebrates which have their blood consumed act as the hosts, with each vector generally having an affinity for the blood of specific species, making those species the hosts. [12]

Transmission between the vector and the host occurs when the vector feeds on the blood of the vertebrate, wherein the virus that has established an infection in the salivary glands of the vector comes into contact with the host's blood. [13] [14] While the virus is inside the host, it undergoes a process called amplification, where the virus replicates at sufficient levels to induce viremia, a condition in which there are large numbers of virions present in the blood. [15] The abundance of virions in the host's blood allows the host to transmit the virus to other organisms if its blood is consumed by them. When uninfected vectors become infected from feeding, they are then capable of transmitting the virus to uninfected hosts, resuming amplification of virus populations. If viremia is not achieved in a vertebrate, the species can be called a "dead-end host", as the virus cannot be transmitted back to the vector. [16]

A flowchart showing the West Nile virus transmission cycle. West Nile virus transmission cycle.jpg
A flowchart showing the West Nile virus transmission cycle.

An example of this vector-host relationship can be observed in the transmission of the West Nile virus. Female mosquitoes of the genus Culex prefer to consume the blood of passerine birds, making them the hosts of the virus. [17] When these birds are infected, the virus amplifies, potentially infecting multiple mosquitoes that feed on its blood. [15] These infected mosquitoes may go on to further transmit the virus to more birds. If the mosquito is unable to find its preferred food source, it will choose another. Human blood is sometimes consumed, but since the West Nile virus does not replicate that well in mammals, humans are considered a dead-end host. [16] [18]

In humans

Person-to-person transmission of arboviruses is not common, but can occur. Blood transfusions, organ transplantation, and the use of blood products can transmit arboviruses if the virus is present in the donor's blood or organs. [19] [20] [21] Because of this, blood and organs are often screened for viruses before being administered. [21] [22] Rarely, vertical transmission, or mother-to-child transmission, has been observed in infected pregnant [23] and breastfeeding women. [24] Exposure to used needles may also transmit arboviruses if they have been used by an infected person or animal. [25] This puts intravenous drug users and healthcare workers at risk for infection in regions where the arbovirus may be spreading in human populations. [21] [23]

Virology

Arboviruses are a polyphyletic group, belonging to various viral genera and therefore exhibiting different virologic characteristics.

Arbovirus Genome type Genome length Diameter Capsid shape Enveloped? Viral entry Replication site Viral shedding Infected cell(s)Genetic variability
African swine fever virus dsDNA170-190 kilobases~200 nm IcosahedralYesEndocytosisNucleusBudding Endothelial cells and red and white blood cells 22 genotypes
Chikungunya virus (CHIKV) +ssRNA11.6 kilobases60 - 70 nmIcosahedralYesMembrane fusionCell cytoplasmBudding Epithelial cells, endothelial cells, primary fibroblasts and macrophages Three genotypes
Dengue virus +ssRNA~11,000 nucleobases ~50 nmIcosahedralYesMembrane fusionCell cytoplasmBudding Langerhans and white blood cellsFour serotypes
Japanese encephalitis virus +ssRNA~11,000 nucleobases~50 nmIcosahedralYesMembrane fusionCell cytoplasmBuddingFive genotypes
Rift Valley fever virus -ssRNASphericalYesCell cytoplasmBuddingNone [note 1]
Tick-borne encephalitis virus +ssRNA~11,000 nucleobases40-50 nmIcosahedralYesMembrane fusionCell cytoplasmBudding Neural cells Five genotypes
West Nile virus +ssRNA~11,000 nucleobases (11-12 kilo bases)45-50 nmIcosahedralYesMembrane fusionCell cytoplasmBudding
Yellow fever virus +ssRNA~11,000 nucleobases40-60 nmIcosahedralYesMembrane fusionCell cytoplasmBudding Hepatocytes and white blood cells
Zika virus +ssRNA10794 nucleobases40 nmIcosahedralYesMembrane fusionCell cytoplasmBudding
  1. No significant distinct genetic populations exist due to the species having recent common ancestry.

Diagnosis

Preliminary diagnosis of arbovirus infection is usually based on clinical presentations of symptoms, places and dates of travel, activities, and epidemiological history of the location where infection occurred. [26] Definitive diagnosis is typically made in a laboratory by employing some combination of blood tests, particularly immunologic, serologic and/or virologic techniques such as ELISA, [26] [27] complement fixation, [27] polymerase chain reaction, [27] [28] neutralization test, [29] and hemagglutination-inhibition test. [30]

Classification

In the past, arboviruses were organized into one of four groups: A, B, C, and D. Group A denoted members of the genus Alphavirus, [31] [32] Group B were members of the genus Flavivirus, [33] and Group C remains as the Group C serogroup of the genus Orthobunyavirus. [34] Group D was renamed in the mid-1950s to the Guama group and is currently the Guama serogroup in the genus Orthobunyavirus. [35] Currently, viruses are jointly classified according to Baltimore classification and a virus-specific system based on standard biological classification. With the exception of the African swine fever virus, which belongs to the Asfarviridae family of viruses, all major clinically important arboviruses belong to one of the following four groups:[ citation needed ]

Prevention

Vector control measures, especially mosquito control, are essential to reducing the transmission of disease by arboviruses. Habitat control involves draining swamps and removal of other pools of stagnant water (such as old tires, large outdoor potted plants, empty cans, etc.) that often serve as breeding grounds for mosquitoes. Insecticides can be applied in rural and urban areas, inside houses and other buildings, or in outdoor environments. They are often quite effective for controlling arthropod populations, though use of some of these chemicals is controversial, and some organophosphates and organochlorides (such as DDT) have been banned in many countries. Infertile male mosquitoes have been introduced in some areas in order to reduce the breeding rate of relevant mosquito species. Larvicides are also used worldwide in mosquito abatement programs. Temefos is a common mosquito larvicide. [36]

Tent made of mosquito netting Mosquito net.jpg
Tent made of mosquito netting

People can also reduce the risk of getting bitten by arthropods by employing personal protective measures such as sleeping under mosquito nets, wearing protective clothing, applying insect repellents such as permethrin and DEET to clothing and exposed skin, and (where possible) avoiding areas known to harbor high arthropod populations. Arboviral encephalitis can be prevented in two major ways: personal protective measures and public health measures to reduce the population of infected mosquitoes. Personal measures include reducing time outdoors particularly in early evening hours, wearing long pants and long sleeved shirts and applying mosquito repellent to exposed skin areas. Public health measures often require spraying of insecticides to kill juvenile (larvae) and adult mosquitoes. [37]

Vaccination

Vaccines are available for the following arboviral diseases:

Vaccines are in development for the following arboviral diseases:

Treatment

Because the arboviral encephalitides are viral diseases, antibiotics are not an effective form of treatment and no effective antiviral drugs have yet been discovered. Treatment is supportive, attempting to deal with problems such as swelling of the brain, loss of the automatic breathing activity of the brain and other treatable complications like bacterial pneumonia. [1]

The WHO caution against the use of aspirin and ibuprofen as they can increase the risk of bleeding. [47] [48]

Epidemiology

Most arboviruses are located in tropical areas, however as a group they have a global distribution. The warm climate conditions found in tropical areas allows for year-round transmission by the arthropod vectors. Other important factors determining geographic distribution of arthropod vectors include rainfall, humidity, and vegetation. [49]

Mapping methods such as GIS and GPS have allowed for spatial and temporal analyses of arboviruses. Tagging cases or breeding sites geographically has allowed for deeper examination of vector transmission. [50]

To see the epidemiology of specific arboviruses, the following resources hold maps, fact sheets, and reports on arboviruses and arboviral epidemics.

ResourceDescriptionLink
World Health OrganizationThe WHO compiles studies and maps of the distribution, risk factors, and prevention of specific viruses.

The WHO also hosts DengueNet, a database which can be queried about Dengue cases.

http://www.who.int/en/

CDC ArboNet Dynamic MapThis interactive map is created by USGS using data from the CDC ArboNET. It provides distribution maps of cases in humans and vectors in the United States. https://web.archive.org/web/20161215234534/http://diseasemaps.usgs.gov/mapviewer/
Center for Disease Control ArboCatalogThe ArboCatalog documents probable arboviruses recorded by the Center for Disease Control, and provides detailed information about the viruses. https://wwwn.cdc.gov/Arbocat/Default.aspx

History

YearEvent
1800s Dengue fever epidemics occur globally
1898–1914First large scale effort to prevent arbovirus infection
takes place in Florida, Havana, and the Panama Canal Zone
1901First arbovirus, the yellow fever virus, is discovered
1906 Dengue fever transmission is discovered
1936 Tick-borne encephalitis virus is discovered
1937 Yellow fever vaccine is invented
1937 West Nile virus is discovered
1950s Japanese encephalitis vaccines are invented
1980s Insecticide treated mosquito nets are developed
1999West Nile virus reaches the Western Hemisphere
Late 1900s Dengue fever spreads globally

Arboviruses were not known to exist until the rise of modern medicine, with the germ theory and an understanding that viruses were distinct from other microorganisms. The connection between arthropods and disease was not postulated until 1881 when Cuban doctor and scientist Carlos Finlay proposed that yellow fever may be transmitted by mosquitoes instead of human contact, [51] a reality that was verified by Major Walter Reed in 1901. [52] The primary vector, Aedes aegypti , had spread globally from the 15th to the 19th centuries as a result of globalization and the slave trade. [53] This geographic spreading caused dengue fever epidemics throughout the 18th and 19th centuries, [54] and later, in 1906, transmission by the Aedes mosquitoes was confirmed, making yellow fever and dengue fever the first two diseases known to be caused by viruses. [55]

Thomas Milton Rivers published the first clear description of a virus as distinct from a bacterium in 1927. [56] [57] The discovery of the West Nile virus came in 1937, [58] and has since been found in Culex populations [59] causing epidemics throughout Africa, the Middle East, and Europe. The virus was introduced into the Western Hemisphere in 1999, sparking a series of epidemics. [60] During the latter half of the 20th century, Dengue fever reemerged as a global disease, with the virus spreading geographically due to urbanization, population growth, increased international travel, and global warming, [61] and continues to cause at least 50 million infections per year, making Dengue fever the most common and clinically important arboviral disease. [62] [63]

Yellow fever, alongside malaria, was a major obstacle in the construction of the Panama Canal. French supervision of the project in the 1880s was unsuccessful because of these diseases, forcing the abandonment of the project in 1889. [64] During the American effort to construct the canal in the early 1900s, William C. Gorgas, the Chief Sanitary Officer of Havana, was tasked with overseeing the health of the workers. He had past success in eradicating the disease in Florida and Havana by reducing mosquito populations through draining nearby pools of water, cutting grass, applying oil to the edges of ponds and swamps to kill larvae, and capturing adult mosquitoes that remained indoors during the daytime. [65] Joseph Augustin LePrince, the Chief Sanitary Inspector of the Canal Zone, invented the first commercial larvicide, a mixture of carbolic acid, resin, and caustic soda, to be used throughout the Canal Zone. [66] The combined implementation of these sanitation measures led to a dramatic decline in the number of workers dying and the eventual eradication of yellow fever in the Canal Zone as well as the containment of malaria during the 10-year construction period. Because of the success of these methods at preventing disease, they were adopted and improved upon in other regions of the world. [64] [67]

See also

Related Research Articles

<span class="mw-page-title-main">West Nile fever</span> Human disease caused by West Nile virus infection

West Nile fever is an infection by the West Nile virus, which is typically spread by mosquitoes. In about 80% of infections people have few or no symptoms. About 20% of people develop a fever, headache, vomiting, or a rash. In less than 1% of people, encephalitis or meningitis occurs, with associated neck stiffness, confusion, or seizures. Recovery may take weeks to months. The risk of death among those in whom the nervous system is affected is about 10 percent.

<i>Flaviviridae</i> Family of viruses

Flaviviridae is a family of enveloped positive-strand RNA viruses which mainly infect mammals and birds. They are primarily spread through arthropod vectors. The family gets its name from the yellow fever virus; flavus is Latin for "yellow", and yellow fever in turn was named because of its propensity to cause jaundice in victims. There are 89 species in the family divided among four genera. Diseases associated with the group include: hepatitis (hepaciviruses), hemorrhagic syndromes, fatal mucosal disease (pestiviruses), hemorrhagic fever, encephalitis, and the birth defect microcephaly (flaviviruses).

<i>Flavivirus</i> Genus of viruses

Flavivirus, renamed Orthoflavivirus in 2023, is a genus of positive-strand RNA viruses in the family Flaviviridae. The genus includes the West Nile virus, dengue virus, tick-borne encephalitis virus, yellow fever virus, Zika virus and several other viruses which may cause encephalitis, as well as insect-specific flaviviruses (ISFs) such as cell fusing agent virus (CFAV), Palm Creek virus (PCV), and Parramatta River virus (PaRV). While dual-host flaviviruses can infect vertebrates as well as arthropods, insect-specific flaviviruses are restricted to their competent arthropods. The means by which flaviviruses establish persistent infection in their competent vectors and cause disease in humans depends upon several virus-host interactions, including the intricate interplay between flavivirus-encoded immune antagonists and the host antiviral innate immune effector molecules.

<span class="mw-page-title-main">Viral encephalitis</span> Medical condition

Viral encephalitis is inflammation of the brain parenchyma, called encephalitis, by a virus. The different forms of viral encephalitis are called viral encephalitides. It is the most common type of encephalitis and often occurs with viral meningitis. Encephalitic viruses first cause infection and replicate outside of the central nervous system (CNS), most reaching the CNS through the circulatory system and a minority from nerve endings toward the CNS. Once in the brain, the virus and the host's inflammatory response disrupt neural function, leading to illness and complications, many of which frequently are neurological in nature, such as impaired motor skills and altered behavior.

<i>Thogotovirus</i> Genus of viruses

Thogotovirus is a genus of enveloped RNA viruses, one of seven genera in the virus family Orthomyxoviridae. Their single-stranded, negative-sense RNA genome has six or seven segments. Thogotoviruses are distinguished from most other orthomyxoviruses by being arboviruses – viruses that are transmitted by arthropods, in this case usually ticks. Thogotoviruses can replicate in both tick cells and vertebrate cells; one subtype has also been isolated from mosquitoes. A consequence of being transmitted by blood-sucking vectors is that the virus must spread systemically in the vertebrate host – unlike influenza viruses, which are transmitted by respiratory droplets and are usually confined to the respiratory system.

<span class="mw-page-title-main">Medical entomology</span> Study of insect impacts on human health

The discipline of medical entomology, or public health entomology, and also veterinary entomology is focused upon insects and arthropods that impact human health. Veterinary entomology is included in this category, because many animal diseases can "jump species" and become a human health threat, for example, bovine encephalitis. Medical entomology also includes scientific research on the behavior, ecology, and epidemiology of arthropod disease vectors, and involves a tremendous outreach to the public, including local and state officials and other stake holders in the interest of public safety.

The National Institute of Virology in Pune, India is an Indian virology research institute and part of the Indian Council of Medical Research (ICMR). It was previously known as 'Virus Research Centre' and was founded in collaboration with the Rockefeller Foundation. It has been designated as a WHO H5 reference laboratory for SE Asia region.

A reverse zoonosis, also known as a zooanthroponosis or anthroponosis, is a pathogen reservoired in humans that is capable of being transmitted to non-human animals.

Powassan encephalitis, caused by the Powassan virus (POWV), a flavivirus also known as the deer tick virus, is a form of arbovirus infection that results from tick bites. It can occur as a co-infection with Lyme disease, as both are transmitted to humans by the same species of tick. Over the last decade, there has been a surge in the number of cases and an expansion of its geographic range. In the United States, cases have been documented primarily in the northeast. The disease was first isolated from the brain of a boy who died of encephalitis in Powassan, Ontario, in 1958. This disease is classified as a zoonosis, originating in animals, often found in rodents and ticks, with subsequent transmission to humans. The virus shares antigenic similarities with the Far Eastern tick-borne encephalitis viruses.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year, resulting in over 725,000 deaths.

<i>Zika virus</i> Species of flavivirus

Zika virus is a member of the virus family Flaviviridae. It is spread by daytime-active Aedes mosquitoes, such as A. aegypti and A. albopictus. Its name comes from the Ziika Forest of Uganda, where the virus was first isolated in 1947. Zika virus shares a genus with the dengue, yellow fever, Japanese encephalitis, and West Nile viruses. Since the 1950s, it has been known to occur within a narrow equatorial belt from Africa to Asia. From 2007 to 2016, the virus spread eastward, across the Pacific Ocean to the Americas, leading to the 2015–2016 Zika virus epidemic.

Rocio viral encephalitis is an epidemic flaviviral disease of humans first observed in São Paulo State, Brazil, in 1975. Low-level enzootic transmission is likely continuing in the epidemic zone, and with increased deforestation and population expansion, additional epidemics caused by Rocio virus are highly probable. If migratory species of birds are, or become involved in, the virus transmission cycle, the competency of a wide variety of mosquito species for transmitting Rocio virus experimentally suggest that the virus may become more widely distributed. The encephalitis outbreak in the western hemisphere caused by West Nile virus, a related flavivirus, highlights the potential for arboviruses to cause severe problems far from their source enzootic foci.

Mayaro virus disease is a mosquito-borne zoonotic pathogen endemic to certain humid forests of tropical South America. Infection with Mayaro virus causes an acute, self-limited dengue-like illness of 3–5 days' duration. The causative virus, abbreviated MAYV, is in the family Togaviridae, and genus Alphavirus. It is closely related to other alphaviruses that produce a dengue-like illness accompanied by long-lasting arthralgia. It is only known to circulate in tropical South America.

<i>Culex quinquefasciatus</i> Species of fly

Culex quinquefasciatus, commonly known as the southern house mosquito, is a medium-sized mosquito found in tropical and subtropical regions of the world. It is a vector of Wuchereria bancrofti, avian malaria, and arboviruses including St. Louis encephalitis virus, Western equine encephalitis virus, Zika virus and West Nile virus. It is taxonomically regarded as a member of the Culex pipiens species complex. Its genome was sequenced in 2010, and was shown to have 18,883 protein-coding genes.

Patricia (Pat) Anne Nuttall, OBE is a British virologist and acarologist known for her research on tick-borne diseases. Her discoveries include the fact that pathogens can be transmitted between vectors feeding on a host without being detectable in the host's blood. She is also a science administrator who served as the director of the Natural Environment Research Council (NERC) Centre for Ecology & Hydrology (2001–11). As of 2015, she is professor of arbovirology in the Department of Zoology of the University of Oxford.

Jamestown Canyon encephalitis is an infectious disease caused by the Jamestown Canyon virus, an orthobunyavirus of the California serogroup. It is mainly spread during the summer by different mosquito species in the United States and Canada.

Spondweni virus is an arbovirus, or arthropod-borne virus, which is a member of the family Flaviviridae and the genus Flavivirus. It is part of the Spondweni serogroup which consists of the Sponweni virus and the Zika virus (ZIKV). The Spondweni virus was first isolated in Nigeria in 1952, and ever since, SPONV transmission and activity have been reported throughout Africa. Its primary vector of transmission is the sylvatic mosquito Aedes circumluteolus, though it has been isolated from several different types of mosquito. Transmission of the virus into humans can lead to a viral infection known as Spondweni fever, with symptoms ranging from headache and nausea to myalgia and arthralgia. However, as SPONV is phylogenetically close to the ZIKV, it is commonly misdiagnosed as ZIKV along with other viral illnesses.

Royal Farm virus, previously known as Karshi virus, was not viewed as pathogenic or harmful to humans. Although infected people suffer with fever-like symptoms, some people in Uzbekistan have reported with severe disease such as encephalitis and other large outbreaks of fever illness connected infection with the virus.

<i>West Nile virus</i> Species of flavivirus causing West Nile fever

West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family Flaviviridae, from the genus Flavivirus, which also contains the Zika virus, dengue virus, and yellow fever virus. The virus is primarily transmitted by mosquitoes, mostly species of Culex. The primary hosts of WNV are birds, so that the virus remains within a "bird–mosquito–bird" transmission cycle. The virus is genetically related to the Japanese encephalitis family of viruses. Humans and horses both exhibit disease symptoms from the virus, and symptoms rarely occur in other animals.

<i>Sepik virus</i> Mosquito transmitted virus endemic to Papua New Guinea

Sepik virus (SEPV) is an arthropod-borne virus (arbovirus) of the genus Flavivirus and family Flaviviridae. Flaviviridae is one of the most well characterized viral families, as it contains many well-known viruses that cause diseases that have become very prevalent in the world, like Dengue virus. The genus Flavivirus is one of the largest viral genera and encompasses over 50 viral species, including tick and mosquito borne viruses like Yellow fever virus and West Nile virus. Sepik virus is much less well known and has not been as well-classified as other viruses because it has not been known of for very long. Sepik virus was first isolated in 1966 from the mosquito Mansoniaseptempunctata, and it derives its name from the Sepik River area in Papua New Guinea, where it was first found. The geographic range of Sepik virus is limited to Papua New Guinea, due to its isolation.

References

  1. 1 2 "CDC Information on Arboviral Encephalitides". Archived from the original on January 27, 2007. Retrieved 2007-02-07.
  2. Hubálek, Z.; Rudolf, I. (2012). "Tick-borne viruses in Europe". Parasitology Research. 111 (1): 9–36. doi:10.1007/s00436-012-2910-1. PMID   22526290. S2CID   18713459.
  3. "Plant arboviruses: major threats to food security". Microbiology Society. Retrieved 20 May 2022.
  4. Stephen J. Schueler; John H. Beckett; D. Scott Gettings (2 April 2008). "Arbovirus Infection Symptoms". freeMD. Archived from the original on 8 September 2008. Retrieved 22 June 2013.
  5. Mostashari, F.; Bunning, M. L.; Kitsutani, P. T.; Singer, D. A.; Nash, D.; Cooper, M. J.; Katz, N.; Liljebjelke, K. A.; Biggerstaff, B. J.; Fine, A. D.; Layton, M. C.; Mullin, S. M.; Johnson, A. J.; Martin, D. A.; Hayes, E. B.; Campbell, G. L. (2001). "Epidemic West Nile encephalitis, New York, 1999: Results of a household-based seroepidemiological survey". The Lancet. 358 (9278): 261–264. doi:10.1016/S0140-6736(01)05480-0. PMID   11498211. S2CID   13074756.
  6. Reiter, P. (2010). "Yellow Fever and Dengue: A threat to Europe?". Eurosurveillance . 15 (10): 19509. doi: 10.2807/ese.15.10.19509-en . PMID   20403310.
  7. Davis, L. E.; Debiasi, R.; Goade, D. E.; Haaland, K. Y.; Harrington, J. A.; Harnar, J. B.; Pergam, S. A.; King, M. K.; Demasters, B. K.; Tyler, K. L. (2006). "West Nile virus neuroinvasive disease". Annals of Neurology. 60 (3): 286–300. doi:10.1002/ana.20959. PMID   16983682. S2CID   30778922.
  8. "Human blood contains the secret ingredient for mosquito eggs". May 4, 2011. Archived from the original on June 30, 2013. Retrieved 6 April 2013.
  9. Last, J., ed. (2001). A Dictionary of Epidemiology. New York: Oxford University Press. pp. 185–186. ISBN   978-0-19-514169-6. OCLC   207797812.
  10. Depaquit, J.; Grandadam, M.; Fouque, F.; Andry, P. E.; Peyrefitte, C. (2010). "Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review". Euro Surveillance. 15 (10): 19507. PMID   20403307.
  11. "Life cycle of Hard Ticks that Spread Disease". Centers for Disease Control and Prevention (CDC). 26 July 2012. Retrieved 26 June 2013.
  12. Kuno, G.; Chang, G. -J. J. (2005). "Biological Transmission of Arboviruses: Reexamination of and New Insights into Components, Mechanisms, and Unique Traits as Well as Their Evolutionary Trends". Clinical Microbiology Reviews. 18 (4): 608–637. doi:10.1128/CMR.18.4.608-637.2005. PMC   1265912 . PMID   16223950.
  13. Wasserman, H. A.; Singh, S.; Champagne, D. E. (2004). "Saliva of the Yellow Fever mosquito, Aedes aegypti, modulates murine lymphocyte function". Parasite Immunology. 26 (6–7): 295–306. doi:10.1111/j.0141-9838.2004.00712.x. PMID   15541033. S2CID   32742815.
  14. Schneider, B. S.; McGee, C. E.; Jordan, J. M.; Stevenson, H. L.; Soong, L.; Higgs, S. (2007). Baylis, Matthew (ed.). "Prior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection". PLOS ONE. 2 (11): e1171. Bibcode:2007PLoSO...2.1171S. doi: 10.1371/journal.pone.0001171 . PMC   2048662 . PMID   18000543.
  15. 1 2 Weaver, S. C. (2005). "Host range, amplification and arboviral disease emergence". Archives of Virology. Supplementum (19): 33–44. doi:10.1007/3-211-29981-5_4. ISBN   3-211-24334-8. PMID   16358422.
  16. 1 2 Bowen, R. A.; Nemeth, N. M. (2007). "Experimental infections with West Nile virus". Current Opinion in Infectious Diseases. 20 (3): 293–297. doi:10.1097/QCO.0b013e32816b5cad. PMID   17471040. S2CID   28937401.
  17. Lura, T.; Cummings, R.; Velten, R.; De Collibus, K.; Morgan, T.; Nguyen, K.; Gerry, A. (2012). "Host (avian) biting preference of southern California Culex mosquitoes (Diptera: Culicidae)". Journal of Medical Entomology. 49 (3): 687–696. doi: 10.1603/ME11177 . PMID   22679878. S2CID   20531226.
  18. Amraoui, F.; Krida, G.; Bouattour, A.; Rhim, A.; Daaboub, J.; Harrat, Z.; Boubidi, S. C.; Tijane, M.; Sarih, M.; Failloux, A. B. (2012). Ikegami, Tetsuro (ed.). "Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Fever Viruses in the Maghreb Region". PLOS ONE. 7 (5): e36757. Bibcode:2012PLoSO...736757A. doi: 10.1371/journal.pone.0036757 . PMC   3365064 . PMID   22693557.
  19. Tambyah, P. A.; Koay, E. S. C.; Poon, M. L. M.; Lin, R. V. T. P.; Ong, B. K. C.; Transfusion-Transmitted Dengue Infection Study Group (2008). "Dengue Hemorrhagic Fever Transmitted by Blood Transfusion". New England Journal of Medicine. 359 (14): 1526–1527. doi: 10.1056/NEJMc0708673 . PMID   18832256.
  20. Iwamoto, M.; Jernigan, D. B.; Guasch, A.; Trepka, M. J.; Blackmore, C. G.; Hellinger, W. C.; Pham, S. M.; Zaki, S.; Lanciotti, R. S.; Lance-Parker, S. E.; Diazgranados, C. A.; Winquist, A. G.; Perlino, C. A.; Wiersma, S.; Hillyer, K. L.; Goodman, J. L.; Marfin, A. A.; Chamberland, M. E.; Petersen, L. R.; West Nile Virus in Transplant Recipients Investigation Team (2003). "Transmission of West Nile Virus from an Organ Donor to Four Transplant Recipients". New England Journal of Medicine. 348 (22): 2196–2203. doi: 10.1056/NEJMoa022987 . PMID   12773646. S2CID   19419227.
  21. 1 2 3 Teo, D.; Ng, L. C.; Lam, S. (2009). "Is dengue a threat to the blood supply?". Transfusion Medicine. 19 (2): 66–77. doi:10.1111/j.1365-3148.2009.00916.x. PMC   2713854 . PMID   19392949.
  22. Centers for Disease Control and Prevention (CDC) (2004). "Update: West Nile virus screening of blood donations and transfusion-associated transmission--United States, 2003". MMWR. Morbidity and Mortality Weekly Report. 53 (13): 281–284. PMID   15071426.
  23. 1 2 Wiwanitkit, V. (2009). "Unusual mode of transmission of dengue". Journal of Infection in Developing Countries. 4 (1): 51–54. doi: 10.3855/jidc.145 . PMID   20130380.
  24. Centers for Disease Control and Prevention (CDC) (2002). "Possible West Nile virus transmission to an infant through breast-feeding--Michigan, 2002". MMWR. Morbidity and Mortality Weekly Report. 51 (39): 877–878. PMID   12375687.
  25. Venter, M.; Swanepoel, R. (2010). "West Nile Virus Lineage 2 as a Cause of Zoonotic Neurological Disease in Humans and Horses in Southern Africa". Vector-Borne and Zoonotic Diseases. 10 (7): 659–664. doi:10.1089/vbz.2009.0230. hdl: 2263/16794 . PMID   20854018. S2CID   25170132.
  26. 1 2 "Arboviral Diagnostic Testing". Centers for Disease Control and Prevention (CDC). Retrieved April 17, 2013.
  27. 1 2 3 "Arbovirus Antibodies Test". Medical Health Tests. March 27, 2012. Retrieved April 17, 2013.
  28. Huang, C.; Slater, B.; Campbell, W.; Howard, J.; White, D. (2001). "Detection of arboviral RNA directly from mosquito homogenates by reverse-transcription-polymerase chain reaction". Journal of Virological Methods. 94 (1–2): 121–128. doi:10.1016/s0166-0934(01)00279-8. PMID   11337046.
  29. Seawright, G. L.; Harding, G.; Thomas, F. C.; Hanson, R. P. (1974). "Microculture Plaque Neutralization Test for California Group Arboviruses". Applied Microbiology. 28 (5): 802–806. doi:10.1128/AEM.28.5.802-806.1974. PMC   186828 . PMID   4216288.
  30. Mettler, N. E.; Clarke, D. H.; Casals, J. (1971). "Hemagglutination Inhibition with Arboviruses: Relationship Between Titers and Source of Erythrocytes". Applied Microbiology. 22 (3): 377–379. doi:10.1128/AEM.22.3.377-379.1971. PMC   376317 . PMID   5165837.
  31. Dalrymple, J. M.; Vogel, S. N.; Teramoto, A. Y.; Russell, P. K. (1973). "Antigenic components of group a arbovirus virions". Journal of Virology. 12 (5): 1034–1042. doi:10.1128/JVI.12.5.1034-1042.1973. PMC   356734 . PMID   4128825.
  32. Tesh, R. B.; Gajdusek, D. C.; Garruto, R. M.; Cross, J. H.; Rosen, L. (1975). "The distribution and prevalence of group a arbovirus neutralizing antibodies among human populations in Southeast Asia and the Pacific islands". The American Journal of Tropical Medicine and Hygiene. 24 (4): 664–675. doi:10.4269/ajtmh.1975.24.664. PMID   1155702.
  33. Lvov, D. K.; Tsyrkin, Y. M.; Karas, F. R.; Timopheev, E. M.; Gromashevski, V. L.; Veselovskaya, O. V.; Osipova, N. Z.; Fomina, K. B.; Grebenyuk, Y. I. (1973). "'Sokuluk' Virus, a new group B arbovirus isolated from Vespertilio pipistrellus Schreber, 1775, bat in the Kirghiz S.S.R". Archiv für die Gesamte Virusforschung. 41 (3): 170–174. doi:10.1007/BF01252762. PMID   4727779. S2CID   625707.
  34. Mezencio, J. M. S.; Peixoto, M. L. P.; Ferreira, P. C. P.; Golgher, R. R. (1978). "Induction of interferon by group C arboviruses". Archives of Virology. 58 (4): 355–358. doi: 10.1007/BF01317828 . PMID   104697. S2CID   39810753.
  35. Shope, R. E.; Woodall, J. P.; da Rosa, A. T. (1988). Monath, T. P. (ed.). The Arboviruses: Epidemiology and Ecology (PDF). Vol. 3. CRC Press. p. 38. ISBN   978-0849343872 . Retrieved 16 June 2013.
  36. Walsh, J. A; Warren, K. S (1980). "Selective primary health care: An interim strategy for disease control in developing countries". Social Science & Medicine. Part C: Medical Economics. 14 (2): 145–63. doi:10.1016/0160-7995(80)90034-9. PMID   7403901.
  37. "Preventing Mosquito Bites". North Carolina Department of Health and Human Services.
  38. "Japanese Encephalitis Vaccine, What You Need to Know" (PDF). Centers for Disease Control and Prevention (CDC). December 7, 2011. Archived from the original (PDF) on 9 March 2013. Retrieved 20 March 2013.
  39. "Yellow Fever Vaccine, What You Need to Know" (PDF). Centers for Disease Control and Prevention (CDC). March 30, 2011. Retrieved 20 March 2013.
  40. "Tick-borne Encephalitis". World Health Organization (WHO). Archived from the original on October 4, 2014. Retrieved 5 November 2019.
  41. 1 2 Ikegami, Tetsuro (2019). "Candidate vaccines for human Rift Valley fever". Expert Opin Biol Ther. 19 (Sep 3): 1333–1342. doi:10.1080/14712598.2019.1662784. PMID   31478397. S2CID   201805546.
  42. "Database Access - UNSW Library".
  43. "Dengue fever vaccine program". Global Vaccines. Archived from the original on 9 January 2013. Retrieved 20 March 2013.
  44. Pandya, Jyotsna; Gorchakov, Rodion; Wang, Eryu; Leal, Grace; Weaver, Scott C (2012). "A vaccine candidate for eastern equine encephalitis virus based on IRES-mediated attenuation". Vaccine. 30 (7): 1276–82. doi:10.1016/j.vaccine.2011.12.121. PMC   3283035 . PMID   22222869.
  45. Young, S. (August 12, 2012). "Few Options in the West Nile Fight". MIT Technology Review. Archived from the original on 22 October 2012. Retrieved 20 March 2013.
  46. Tharmarajah, Kothila; Mahalingam, Suresh; Zaid, Ali (2017). "Chikungunya: vaccines and therapeutics". F1000Research. 6 (Dec 8): 2114. doi: 10.12688/f1000research.12461.1 . PMC   5728195 . PMID   29259782.
  47. "Dengue and severe dengue -section What is the treatment for dengue?". WHO. 24 October 2019.
  48. Ehelepola, N. D. B.; Athurupana, A. A. S. D.; Bowatte, P. G. C. S.; Dissanayake, Wasantha P. (8 January 2020). "Continuation of Dual Antiplatelet Therapy in a Patient with a Coronary Artery Stent with Dengue Hemorrhagic Fever: A Clinical Conundrum". The American Journal of Tropical Medicine and Hygiene. 102 (1): 17–19. doi: 10.4269/ajtmh.19-0512 . ISSN   0002-9637. PMC   6947787 . PMID   31701855.
  49. Gubler, Duane J (2002). "The Global Emergence/Resurgence of Arboviral Diseases As Public Health Problems". Archives of Medical Research. 33 (4): 330–42. doi:10.1016/S0188-4409(02)00378-8. PMID   12234522.
  50. Petersen, L. R; Busch, M. P (2010). "Transfusion-transmitted arboviruses". Vox Sanguinis. 98 (4): 495–503. doi: 10.1111/j.1423-0410.2009.01286.x . PMID   19951309. S2CID   29858335.
  51. Chaves-Carballo, E. (2005). "Carlos Finlay and yellow fever: Triumph over adversity". Military Medicine. 170 (10): 881–885. doi: 10.7205/milmed.170.10.881 . PMID   16435764.
  52. Russell, F. F. (1934). "Permanent Value of Major Walter Reed's Work on Yellow Fever *". American Journal of Public Health and the Nation's Health. 24 (1): 1–7. doi:10.2105/AJPH.24.1.1. PMC   1558495 . PMID   18013904.
  53. Simmons, C. P.; Farrar, J. J.; Nguyen, N.; Wills, B. (2012). "Dengue". New England Journal of Medicine. 366 (15): 1423–1432. doi:10.1056/NEJMra1110265. hdl: 11343/191104 . PMID   22494122.
  54. Gubler, D. J. (1998). "Dengue and dengue hemorrhagic fever". Clinical Microbiology Reviews. 11 (3): 480–496. doi:10.1128/CMR.11.3.480. PMC   88892 . PMID   9665979.
  55. Henchal, E. A.; Putnak, J. R. (1990). "The dengue viruses". Clinical Microbiology Reviews. 3 (4): 376–396. doi:10.1128/CMR.3.4.376. PMC   358169 . PMID   2224837.
  56. Rivers, TM (October 1927). "Filterable Viruses a Critical Review". Journal of Bacteriology. 14 (4): 217–58. doi:10.1128/jb.14.4.217-258.1927. PMC   374955 . PMID   16559270.
  57. Calisher, Charles H. (2013). Lifting the impenetrable veil : from yellow fever to Ebola hemorrhagic fever and SARS (1st ed.). Red Feather Lakes, Colo.: Rockpile Press. ISBN   978-0615827735.
  58. Smithburn, K. C.; Hughes, T. P.; Burke, A. W.; Paul, J. H. (1940). "A Neurotropic Virus Isolated from the Blood of a Native of Uganda". American Journal of Tropical Medicine and Hygiene. 20 (4): 471–472. doi:10.4269/ajtmh.1940.s1-20.471.
  59. Taylor, R. M.; Hurlbut, H. S.; Dressler, H. R.; Spangler, E. W.; Thrasher, D. (1953). "Isolation of West Nile virus from Culex mosquitoes". The Journal of the Egyptian Medical Association. 36 (3): 199–208. PMID   13084817.
  60. Sun, L. H. (13 September 2012). "West Nile epidemic on track to be deadliest ever: CDC". The Washington Post. Archived from the original on 24 June 2013. Retrieved 19 June 2013.
  61. Whitehorn, J.; Farrar, J. (2010). "Dengue". British Medical Bulletin. 95: 161–173. doi: 10.1093/bmb/ldq019 . PMID   20616106. S2CID   215154729.
  62. Rodenhuis-Zybert, I. A.; Wilschut, J.; Smit, J. M. (2010). "Dengue virus life cycle: Viral and host factors modulating infectivity". Cellular and Molecular Life Sciences. 67 (16): 2773–2786. doi:10.1007/s00018-010-0357-z. PMID   20372965. S2CID   4232236.
  63. Guzman, M. G.; Halstead, S. B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D. J.; Hunsperger, E.; Kroeger, A.; Margolis, H. S.; Martínez, E.; Nathan, M. B.; Pelegrino, J. L.; Simmons, C.; Yoksan, S.; Peeling, R. W. (2010). "Dengue: A continuing global threat". Nature Reviews Microbiology. 8 (12): S7–16. doi:10.1038/nrmicro2460. PMC   4333201 . PMID   21079655.
  64. 1 2 "Tropical Diseases and the Construction of the Panama Canal, 1904–1914". Contagion: Historical Views of Diseases and Epidemics. Retrieved 19 June 2013.
  65. "Malaria: The Panama Canal". Centers for Disease Control and Prevention (CDC). 8 February 2010. Retrieved 19 June 2013.
  66. Lapointe, P. M. (1987). "Joseph Augustin LePrince: His battle against mosquitoes and malaria". The West Tennessee Historical Society Papers. West Tennessee Historical Society. 41: 48–61. PMID   12862098.
  67. "Yellow Fever and Malaria in the Canal". PBS. American Experience. Archived from the original on 23 March 2017. Retrieved 19 June 2013.