Omsk hemorrhagic fever

Last updated
Omsk hemorrhagic fever
Specialty Infectious disease

Omsk hemorrhagic fever is a viral hemorrhagic fever caused by a Flavivirus. [1]

Contents

It was found in Siberia [2] and was named for an outbreak in the city of Omsk. First records of the new virus appeared around 1940–1943.

Signs and symptoms

There are a number of symptoms of the virus. In the first 1–8 days the first phase begins. The symptoms in this phase are:

In 1–2 weeks, some people may recover, although others might not. They might experience a focal hemorrhage in mucosa of gingival, uterus, and lungs, a papulovesicular rash on the soft palate, cervical lymphadenopathy (it occurs in the neck which that enlarges the lymph glandular tissue), and occasional neurological involvement. If the patient still has OHF after 3 weeks, then a second wave of symptoms will occur. It also includes signs of encephalitis. In most cases if the sickness does not fade away after this period, the patient will die. Patients that recover from OHF may experience hearing loss, hair loss, and behavioral or psychological difficulties associated with neurological conditions.

Cause

Omsk hemorrhagic fever virus
Ijms-20-04657-g002.webp
Flavivirus structure and genome
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Flasuviricetes
Order: Amarillovirales
Family: Flaviviridae
Genus: Flavivirus
Species:
Omsk hemorrhagic fever virus
Synonyms [3]

Omsk haemorrhagic fever virus, Orthoflavivirus omskense

Omsk hemorrhagic fever is caused by Omsk hemorrhagic fever virus (OHFV), a member of the Flavivirus family. The current species name is Orthoflavivirus omskense [4] according to International Committee on Taxonomy of Viruses taxonomy standards. The virus was discovered by Mikhail Chumakov and his colleagues between 1945 and 1947 in Omsk, Russia. The infection is found in Western Siberia, in places including Omsk Oblast, Novosibirsk Oblast, Kurgan Oblast, Tyumen Oblast. The virus survives in water and is transferred to humans via contaminated water or an infected tick.

Spread

The main hosts of OHFV are rodents like the non-native muskrat. OHFV originates in ticks, who then transmit it to rodents by biting them. Humans become infected through tick bites or contact with a muskrat. Humans can also become infected through contact with blood, feces or urine of a dead or sick muskrat (or any type of rat). The virus can also spread through milk from infected goats or sheep. There is no evidence that the virus is contagious among humans.

Evolution

The virus appears to have evolved within the last 1000 years. [5] The viral genomes can be divided into 2 clades—A and B. Clade A has five genotypes and clade B has one. These clades separated about 700 years ago. This separation appears to have occurred in the Kurgan province. Clade A subsequently underwent division into clade C, D and E 230 years ago. Clade C and E appear to have originated in the Novosibirsk and Omsk Provinces respectively. The muskrat Ondatra zibethicus which is highly susceptible to this virus was introduced into this area in the 1930s.

Diagnosis

Omsk Hemorrhagic Fever could be diagnosed by isolating virus from blood, or by serologic testing using immunosorbent serological assay. OHF rating of fatality is 0.5–3%. Treatment is supportive; there is no specific treatment for OHF. This helps maintain hydration and provides precautions for patients with bleeding disorders.

Prevention

Preventing Omsk Hemorrhagic Fever consists primarily in avoiding being exposed to tick. Persons engaged in camping, farming, forestry, hunting (especially the Siberian muskrat) are at greater risk and should wear protective clothing or use insect repellent for protection. The same is generally recommended for persons at sheltered locations.

Related Research Articles

<i>Flaviviridae</i> Family of viruses

Flaviviridae is a family of enveloped positive-strand RNA viruses which mainly infect mammals and birds. They are primarily spread through arthropod vectors. The family gets its name from the yellow fever virus; flavus is Latin for "yellow", and yellow fever in turn was named because of its propensity to cause jaundice in victims. There are 89 species in the family divided among four genera. Diseases associated with the group include: hepatitis (hepaciviruses), hemorrhagic syndromes, fatal mucosal disease (pestiviruses), hemorrhagic fever, encephalitis, and the birth defect microcephaly (flaviviruses).

<span class="mw-page-title-main">Colorado tick fever</span> Medical condition

Colorado tick fever (CTF) is a viral infection (Coltivirus) transmitted from the bite of an infected Rocky Mountain wood tick (Dermacentor andersoni). It should not be confused with the bacterial tick-borne infection, Rocky Mountain spotted fever. Colorado tick fever is probably the same disease that American pioneers referred to as "mountain fever".

<i>Flavivirus</i> Genus of viruses

Flavivirus, renamed Orthoflavivirus in 2023, is a genus of positive-strand RNA viruses in the family Flaviviridae. The genus includes the West Nile virus, dengue virus, tick-borne encephalitis virus, yellow fever virus, Zika virus and several other viruses which may cause encephalitis, as well as insect-specific flaviviruses (ISFs) such as cell fusing agent virus (CFAV), Palm Creek virus (PCV), and Parramatta River virus (PaRV). While dual-host flaviviruses can infect vertebrates as well as arthropods, insect-specific flaviviruses are restricted to their competent arthropods. The means by which flaviviruses establish persistent infection in their competent vectors and cause disease in humans depends upon several virus-host interactions, including the intricate interplay between flavivirus-encoded immune antagonists and the host antiviral innate immune effector molecules.

Bolivian hemorrhagic fever (BHF), also known as black typhus or Ordog Fever, is a hemorrhagic fever and zoonotic infectious disease originating in Bolivia after infection by Machupo mammarenavirus.

<i>Bunyavirales</i> Order of RNA viruses

Bunyavirales is an order of segmented negative-strand RNA viruses with mainly tripartite genomes. Member viruses infect arthropods, plants, protozoans, and vertebrates. It is the only order in the class Ellioviricetes. The name Bunyavirales derives from Bunyamwera, where the original type species Bunyamwera orthobunyavirus was first discovered. Ellioviricetes is named in honor of late virologist Richard M. Elliott for his early work on bunyaviruses.

<span class="mw-page-title-main">Arenavirus</span> Family of RNA viruses

An arenavirus is a bi- or trisegmented ambisense RNA virus that is a member of the family Arenaviridae. These viruses infect rodents and occasionally humans. A class of novel, highly divergent arenaviruses, properly known as reptarenaviruses, have also been discovered which infect snakes to produce inclusion body disease. At least eight arenaviruses are known to cause human disease. The diseases derived from arenaviruses range in severity. Aseptic meningitis, a severe human disease that causes inflammation covering the brain and spinal cord, can arise from the lymphocytic choriomeningitis virus. Hemorrhagic fever syndromes, including Lassa fever, are derived from infections such as Guanarito virus, Junin virus, Lassa virus, Lujo virus, Machupo virus, Sabia virus, or Whitewater Arroyo virus. Because of the epidemiological association with rodents, some arenaviruses and bunyaviruses are designated as roboviruses.

<span class="mw-page-title-main">Kyasanur Forest disease</span> Human disease

Kyasanur forest disease (KFD) is a tick-borne viral haemorrhagic fever endemic to South-western part of India. The disease is caused by a virus belonging to the family Flaviviridae. KFDV is transmitted to humans through the bite of infected hard ticks which act as a reservoir of KFDV.

Venezuelan hemorrhagic fever (VHF) is a zoonotic human illness first identified in 1989. The disease is most prevalent in several rural areas of central Venezuela and is caused by Guanarito mammarenavirus (GTOV) which belongs to the Arenaviridae family. The short-tailed cane mouse is the main host for GTOV which is spread mostly by inhalation of aerosolized droplets of saliva, respiratory secretions, urine, or blood from infected rodents. Person-to-person spread is possible, but uncommon.

<span class="mw-page-title-main">Crimean–Congo hemorrhagic fever</span> Disease of humans and other animals

Crimean–Congo hemorrhagic fever (CCHF) is a viral disease. Symptoms of CCHF may include fever, muscle pains, headache, vomiting, diarrhea, and bleeding into the skin. Onset of symptoms is less than two weeks following exposure. Complications may include liver failure. Survivors generally recover around two weeks after onset.

<i>Cardiovirus</i> Genus of viruses

Cardiovirus are a group of viruses within order Picornavirales, family Picornaviridae. Vertebrates serve as natural hosts for these viruses.

Alkhurma virus (ALKV) is a zoonotic virus of the Flaviviridae virus family. ALKV causes Alkhurma hemorrhagic fever (AHF), or alternatively termed as Alkhurma hemorrhagic fever virus, and is mainly based in Saudi Arabia.

Powassan virus (POWV) is a Flavivirus transmitted by ticks, found in North America and in the Russian Far East. It is named after the town of Powassan, Ontario, where it was identified in a young boy who eventually died from it. It can cause encephalitis, inflammation of the brain. No approved vaccine or antiviral drug exists. Prevention of tick bites is the best precaution.

<i>Coltivirus</i> Genus of viruses

Coltivirus is a genus of viruses that infects vertebrates and invertebrates. It includes the causative agent of Colorado tick fever. Colorado tick fever virus can cause a fever, chills, headache, photophobia, myalgia, arthralgia, and lethargy. Children, in particular, may develop a hemorrhagic disease. Leukopenia with both lymphocytes and neutrophils is very common for Colorado tick fever virus. In either case, the infection can lead to encephalitis or meningitis.

<i>Chapare mammarenavirus</i> Species of virus

Chapare mammarenavirus or Chapare virus is a virus from the family Arenaviridae which causes a hemorrhagic fever in humans known as Chapare hemorrhagic fever. It was first described after an outbreak of a novel zoonotic mammarenavirus infection occurred in the village of Samuzabeti, Chapare Province, Bolivia, in January 2003. A small number of people were infected and one person died.

Lujo is a bisegmented RNA virus—a member of the family Arenaviridae—and a known cause of viral hemorrhagic fever (VHF) in humans. Its name was suggested by the Special Pathogens Unit of the National Institute for Communicable Diseases of the National Health Laboratory Service (NICD-NHLS) by using the first two letters of the names of the cities involved in the 2008 outbreak of the disease, Lusaka (Zambia) and Johannesburg. It is the second pathogenic Arenavirus to be described from the African continent—the first being Lassa virus—and since 2012 has been classed as a "Select Agent" under U.S. law.

<span class="mw-page-title-main">Hantavirus hemorrhagic fever with renal syndrome</span> Group of clinically similar illnesses caused by species of hantaviruses

Hantavirus hemorrhagic fever with renal syndrome (HFRS) is a group of clinically similar illnesses caused by species of hantaviruses. It is also known as Korean hemorrhagic fever and epidemic hemorrhagic fever. It is found in Europe, Asia, and Africa. The species that cause HFRS include Hantaan orthohantavirus, Dobrava-Belgrade orthohantavirus, Saaremaa virus, Seoul orthohantavirus, Puumala orthohantavirus and other orthohantaviruses. Of these species, Hantaan River virus and Dobrava-Belgrade virus cause the most severe form of the syndrome and have the highest morbidity rates. When caused by the Puumala virus, it is also called nephropathia epidemica. This infection is known as sorkfeber in Swedish, myyräkuume in Finnish, and musepest in Norwegian.

In 1954 the Hazara orthonairovirus, one of the 34 tick-borne viruses of the genus Orthonairovirus, was discovered in Pakistan in the Ixodes tick native to that region. Today this virus is studied in mice in an attempt to develop treatments for the highly pathogenic Crimean-Congo Hemorrhagic Fever virus.

Spondweni virus is an arbovirus, or arthropod-borne virus, which is a member of the family Flaviviridae and the genus Flavivirus. It is part of the Spondweni serogroup which consists of the Sponweni virus and the Zika virus (ZIKV). The Spondweni virus was first isolated in Nigeria in 1952, and ever since, SPONV transmission and activity have been reported throughout Africa. Its primary vector of transmission is the sylvatic mosquito Aedes circumluteolus, though it has been isolated from several different types of mosquito. Transmission of the virus into humans can lead to a viral infection known as Spondweni fever, with symptoms ranging from headache and nausea to myalgia and arthralgia. However, as SPONV is phylogenetically close to the ZIKV, it is commonly misdiagnosed as ZIKV along with other viral illnesses.

Royal Farm virus, previously known as Karshi virus, was not viewed as pathogenic or harmful to humans. Although infected people suffer with fever-like symptoms, some people in Uzbekistan have reported with severe disease such as encephalitis and other large outbreaks of fever illness connected infection with the virus.

<i>Sepik virus</i> Mosquito transmitted virus endemic to Papua New Guinea

Sepik virus (SEPV) is an arthropod-borne virus (arbovirus) of the genus Flavivirus and family Flaviviridae. Flaviviridae is one of the most well characterized viral families, as it contains many well-known viruses that cause diseases that have become very prevalent in the world, like Dengue virus. The genus Flavivirus is one of the largest viral genera and encompasses over 50 viral species, including tick and mosquito borne viruses like Yellow fever virus and West Nile virus. Sepik virus is much less well known and has not been as well-classified as other viruses because it has not been known of for very long. Sepik virus was first isolated in 1966 from the mosquito Mansoniaseptempunctata, and it derives its name from the Sepik River area in Papua New Guinea, where it was first found. The geographic range of Sepik virus is limited to Papua New Guinea, due to its isolation.

References

  1. Holbrook MR, Aronson JF, Campbell GA, Jones S, Feldmann H, Barrett AD (January 2005). "An animal model for the tickborne flavivirus--Omsk hemorrhagic fever virus". J. Infect. Dis. 191 (1): 100–8. doi: 10.1086/426397 . PMID   15593010.
  2. Lin D, Li L, Dick D, et al. (August 2003). "Analysis of the complete genome of the tick-borne flavivirus Omsk hemorrhagic fever virus". Virology. 313 (1): 81–90. doi: 10.1016/S0042-6822(03)00246-0 . PMID   12951023.
  3. ICTV 2nd Report Fenner, F. (1976). Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology 7: 1-115. https://ictv.global/ictv/proposals/ICTV%202nd%20Report.pdf
  4. "Omsk hemorrhagic fever virus". www.genome.jp. Retrieved 2023-11-01.
  5. Karan LS, Ciccozzi M, Yakimenko VV, Presti AL, Cella E, Zehender G, Rezza G, Platonov AE (2013). "The deduced evolution history of Omsk hemorrhagic fever virus". J Med Virol. 86 (7): 1181–7. doi:10.1002/jmv.23856. PMID   24259273. S2CID   36929638.