Setrobuvir

Last updated
Setrobuvir
Setrobuvir.svg
Names
Preferred IUPAC name
N-(3-{(4aR,5S,8R,8aS)-1-[(4-Fluorophenyl)methyl]-4-hydroxy-2-oxo-1,2,4a,5,6,7,8,8a-octahydro-5,8-methanoquinolin-3-yl}-1,1-dioxo-1,4-dihydro-1λ6,2,4-benzothiadiazin-7-yl)methanesulfonamide [1]
Other names
ANA-598; ANA598
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C25H25FN4O6S2/c1-37(33,34)28-17-8-9-18-19(11-17)38(35,36)29-24(27-18)21-23(31)20-14-4-5-15(10-14)22(20)30(25(21)32)12-13-2-6-16(26)7-3-13/h2-3,6-9,11,14-15,20,22,28,31H,4-5,10,12H2,1H3,(H,27,29)/t14-,15+,20+,22-/m0/s1 Yes check.svgY
    Key: DEKOYVOWOVJMPM-RLHIPHHXSA-N Yes check.svgY
  • InChI=1/C25H25FN4O6S2/c1-37(33,34)28-17-8-9-18-19(11-17)38(35,36)29-24(27-18)21-23(31)20-14-4-5-15(10-14)22(20)30(25(21)32)12-13-2-6-16(26)7-3-13/h2-3,6-9,11,14-15,20,22,28,31H,4-5,10,12H2,1H3,(H,27,29)/t14-,15+,20+,22-/m0/s1
    Key: DEKOYVOWOVJMPM-RLHIPHHXBY
  • CS(NC(C=C1)=CC2=C1NC(C3=C(O)[C@@]4([H])[C@@]([C@@H]5CC[C@H]4C5)([H])N(CC6=CC=C(F)C=C6)C3=O)=NS2(=O)=O)(=O)=O
Properties
C25H25FN4O6S2
Molar mass 560.62 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Setrobuvir (also known as ANA-598) was an experimental drug candidate for the treatment of hepatitis C that was discovered at Anadys Pharmaceuticals, which was acquired by Roche in 2011; Roche terminated development in July 2015. [2] [3] It was in Phase IIb clinical trials, used in combination with interferon and ribavirin, targeting hepatitis C patients with genotype 1. [3]

Setrobuvir works by inhibiting the hepatitis C enzyme NS5B, an RNA polymerase. [4]

Related Research Articles

<span class="mw-page-title-main">Hepatitis C virus</span> Species of virus

The hepatitis C virus (HCV) is a small, enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer and lymphomas in humans.

<span class="mw-page-title-main">Tibotec</span>

Tibotec was a pharmaceutical company with a focus on research and development for the treatment of infectious diseases such as HIV/AIDS and hepatitis C. The company was founded in 1994 and then acquired by Johnson & Johnson and merged into its Janssen Pharmaceuticals division in 2002.

<span class="mw-page-title-main">NS3 (HCV)</span>

Nonstructural protein 3 (NS3), also known as p-70, is a viral nonstructural protein that is 70 kDa cleavage product of the hepatitis C virus polyprotein. It acts as a serine protease. C-terminal two-thirds of the protein also acts as helicase and nucleoside triphosphatase. First (N-terminal) 180 aminoacids of NS3 has additional role as cofactor domains for NS2 protein.

<span class="mw-page-title-main">NS5A (hepacivirus)</span>

Nonstructural protein 5A (NS5A) is a zinc-binding and proline-rich hydrophilic phosphoprotein that plays a key role in Hepatitis C virus RNA replication. It appears to be a dimeric form without trans-membrane helices.

<span class="mw-page-title-main">PSI-6130</span> Chemical compound

PSI-6130 is an experimental treatment for hepatitis C. PSI-6130 is a member of a class of antiviral drugs known as nucleoside polymerase inhibitors that was created by chemist Jeremy L. Clark. Specifically, PSI-6130 inhibits the hepatitis C virus RNA dependant RNA polymerase called NS5B.

<span class="mw-page-title-main">NS5B (Hepacivirus)</span>

Nonstructural protein 5B (NS5B) is a viral protein found in the hepatitis C virus (HCV). It is an RNA-dependent RNA polymerase, having the key function of replicating HCV's viral RNA by using the viral positive RNA strand as a template to catalyze the polymerization of ribonucleoside triphosphates (rNTP) during RNA replication. Several crystal structures of NS5B polymerase in several crystalline forms have been determined based on the same consensus sequence BK. The structure can be represented by a right hand shape with fingers, palm, and thumb. The encircled active site, unique to NS5B, is contained within the palm structure of the protein. Recent studies on NS5B protein genotype 1b strain J4's (HC-J4) structure indicate a presence of an active site where possible control of nucleotide binding occurs and initiation of de-novo RNA synthesis. De-novo adds necessary primers for initiation of RNA replication.

<span class="mw-page-title-main">Ledipasvir/sofosbuvir</span> Medication used to treat hepatitis C

Ledipasvir/sofosbuvir, sold under the trade name Harvoni among others, is a medication used to treat hepatitis C. It is a fixed-dose combination of ledipasvir and sofosbuvir. Cure rates are 94% to 99% in people infected with hepatitis C virus (HCV) genotype 1. Some evidence also supports use in HCV genotype 3 and 4. It is taken daily by mouth for 8–24 weeks.

<span class="mw-page-title-main">Radalbuvir</span> Chemical compound

Radalbuvir is an experimental antiviral drug for the treatment of hepatitis C virus (HCV) infection developed by Gilead Sciences. Radalbuvir acts as an NS5B inhibitor. It is currently in clinical trials. It targets NS5B polymerase.

<span class="mw-page-title-main">Beclabuvir</span>

Beclabuvir is an antiviral drug for the treatment of hepatitis C virus (HCV) infection that has been studied in clinical trials. In February 2017, Bristol-Myers Squibb began sponsoring a post-marketing trial of beclabuvir, in combination with asunaprevir and daclatasvir, to study the combination's safety profile with regard to liver function. From February 2014 to November 2016, a phase II clinical trial was conducted on the combination of asunaprevir/daclatasvir/beclabuvir on patients infected with both HIV and HCV. Furthermore, a recent meta-analysis of six published six clinical trials showed high response rates in HCV genotype 1-infected patients treated with daclatasvir, asunaprevir, and beclabuvir irrespective of ribavirin use, prior interferon-based therapy, or restriction on noncirrhotic patients, IL28B genotype, or baseline resistance-associated variants

Odalasvir is an investigational new drug in development for the treatment of hepatitis C. It is an NS5A inhibitor. The NS5A protein serves multiple functions at various stages of the viral life cycle, including viral replication. NS5A also plays a role in the development of interferon-resistance, a common cause of treatment failure. It is under development by Achillion Pharmaceuticals.

<span class="mw-page-title-main">Filibuvir</span> Chemical compound

Filibuvir was a non-nucleoside orally available NS5B inhibitor developed by Pfizer for the treatment of hepatitis C. It binds to the non-catalytic Thumb II allosteric pocket of NS5B viral polymerase and causes a decrease in viral RNA synthesis. It is a potent and selective inhibitor, with a mean IC50 of 0.019 μM against genotype 1 polymerases. Several filibuvir-resistant mutations have been identified, M423 being the most common that occurred after filibuvir monotherapy. It was intended to be taken twice-daily.

<span class="mw-page-title-main">Discovery and development of NS5A inhibitors</span>

Nonstructural protein 5A (NS5A) inhibitors are direct acting antiviral agents (DAAs) that target viral proteins, and their development was a culmination of increased understanding of the viral life cycle combined with advances in drug discovery technology. However, their mechanism of action is complex and not fully understood. NS5A inhibitors were the focus of much attention when they emerged as a part of the first curative treatment for hepatitis C virus (HCV) infections in 2014. Favorable characteristics have been introduced through varied structural changes, and structural similarities between NS5A inhibitors that are clinically approved are readily apparent. Despite the recent introduction of numerous new antiviral drugs, resistance is still a concern and these inhibitors are therefore always used in combination with other drugs.

<span class="mw-page-title-main">Narlaprevir</span>

Narlaprevir, is an inhibitor of NS3/4A serine protease, intended for the treatment of chronic hepatitis C caused by genotype 1 virus in combination with other antiviral drugs.

<span class="mw-page-title-main">Danoprevir</span> Medication

Danoprevir (INN) is an orally available 15-membered macrocyclic peptidomimetic inhibitor of NS3/4A HCV protease. It contains acylsulfonamide, fluoroisoindole and tert-butyl carbamate moieties. Danoprevir is a clinical candidate based on its favorable potency profile against multiple HCV genotypes 1–6 and key mutants (GT1b, IC50 = 0.2–0.4 nM; replicon GT1b, EC50 = 1.6 nM). Danoprevir has been evaluated in an open-label, single arm clinical trial in combination with ritonavir for treating COVID-19 and favourably compared to lopinavir/ritonavir in a second trial.

<span class="mw-page-title-main">Glecaprevir</span> Chemical compound

Glecaprevir (INN,) is a hepatitis C virus (HCV) nonstructural (NS) protein 3/4A protease inhibitor that was identified jointly by AbbVie and Enanta Pharmaceuticals. It is being developed as a treatment of chronic hepatitis C infection in co-formulation with an HCV NS5A inhibitor pibrentasvir. Together they demonstrated potent antiviral activity against major HCV genotypes and high barriers to resistance in vitro.

Glecaprevir/pibrentasvir (G/P), sold under the brand names Mavyret and Maviret, is a fixed-dose combination medication used to treat hepatitis C. It contains glecaprevir and pibrentasvir. It works against all six types of hepatitis C. At twelve weeks following treatment between 81% and 100% of people have no evidence of hepatitis C. It is taken once a day by mouth with food.

<span class="mw-page-title-main">NS5B inhibitor</span> Class of pharmaceutical drugs

Non-structural protein 5B (NS5B) inhibitors are a class of direct-acting antivirals widely used in the treatment of chronic hepatitis C. Depending on site of action and chemical composition, NS5B inhibitors may be categorized into three classes—nucleoside active site inhibitors (NIs), non-nucleoside allosteric inhibitors, and pyrophosphate analogues. Subsequently, all three classes are then subclassified. All inhibit RNA synthesis by NS5B but at different stages/sites resulting in inability of viral RNA replication. Expression of direct-acting NS5B inhibitors does not take place in cells that are not infected by hepatitis C virus, which seems to be beneficial for this class of drugs.

<span class="mw-page-title-main">IDX-184</span>

IDX-184 is an antiviral drug which was developed as a treatment for hepatitis C, acting as a NS5B RNA polymerase inhibitor. While it showed reasonable effectiveness in early clinical trials it did not progress past Phase IIb. However research using this drug has continued as it shows potentially useful activity against other emerging viral diseases such as Zika virus, and coronaviruses including MERS, and SARS-CoV-2.

<span class="mw-page-title-main">TMC-647055</span>

TMC-647055 is an experimental antiviral drug which was developed as a treatment for hepatitis C, and is in clinical trials as a combination treatment with ribavirin and simeprevir. It acts as a NS5b polymerase inhibitor.

<span class="mw-page-title-main">Bemnifosbuvir</span>

Bemnifosbuvir is an antiviral drug invented by Atea Pharmaceuticals and licensed to Roche for clinical development, a novel nucleotide analog prodrug originally developed for the treatment of hepatitis C. AT-527 is the orally bioavailable hemisulfate salt of AT-511, which is metabolised in several steps to the active nucleotide triphosphate AT-9010, acting as an RNA polymerase inhibitor and thereby interfering with viral replication. AT-527 has been researched for the treatment of coronavirus diseases such as that produced by SARS-CoV-2. It showed good results in early clinical trials but had inconsistent results at later stages, so the planned Phase 3 trials are being redesigned and results are not expected until late 2022.

References

  1. "International Nonproprietary Names for Pharmaceutical Substances (INN). RECOMMENDED International Nonproprietary Names: List 68" (PDF). World Health Organization. p. 322.
  2. "Setrobuvir". AdisInsight. Retrieved 28 August 2017.
  3. 1 2 "HCV Followup: Anadys Acquired for Active Antiviral". Chemical & Engineering News. October 24, 2011.
  4. Ruebsam, F; Murphy, DE; Tran, CV; Li, LS; Zhao, J; Dragovich, PS; McGuire, HM; Xiang, AX; et al. (2009). "Discovery of tricyclic 5,6-dihydro-1H-pyridin-2-ones as novel, potent, and orally bioavailable inhibitors of HCV NS5B polymerase". Bioorganic & Medicinal Chemistry Letters. 19 (22): 6404–12. doi:10.1016/j.bmcl.2009.09.045. PMID   19818610. S2CID   5870912.