Inactivated vaccine

Last updated
Inactivated vaccine
Soldiers receiving typhoid vaccinations (Reeve 036335), National Museum of Health and Medicine (5243638771).jpg
Typhoid prophylaxis for soldiers in World War I.
Other namesKilled vaccine
Specialty Public health, Immunology, Family medicine, General practice
Usesprevention of infectious diseases
Frequencybirth to adulthood
Outcomesdevelopment of active immunity in individuals; contribution to herd immunity

An inactivated vaccine (or killed vaccine) is a vaccine consisting of virus particles, bacteria, or other pathogens that have been grown in culture and then killed to destroy disease-producing capacity. In contrast, live vaccines use pathogens that are still alive (but are almost always attenuated, that is, weakened). Pathogens for inactivated vaccines are grown under controlled conditions and are killed as a means to reduce infectivity and thus prevent infection from the vaccine. [1]

Contents

Inactivated vaccines were first developed in the late 1800s and early 1900s for cholera, plague, and typhoid. [2] Today, inactivated vaccines exist for many pathogens, including influenza, polio (IPV), rabies, hepatitis A and pertussis. [3]

Because inactivated pathogens tend to produce a weaker response by the immune system than live pathogens, immunologic adjuvants and multiple "booster" injections may be required in some vaccines to provide an effective immune response against the pathogen. [1] [4] [5] Attenuated vaccines are often preferable for generally healthy people because a single dose is often safe and very effective. However, some people cannot take attenuated vaccines because the pathogen poses too much risk for them (for example, elderly people or people with immunodeficiency). For those patients, an inactivated vaccine can provide protection.[ citation needed ]

Mechanism

The pathogen particles are destroyed and cannot divide, but the pathogens maintain some of their integrity to be recognized by the immune system and evoke an adaptive immune response. [6] [7] When manufactured correctly, the vaccine is not infectious, but improper inactivation can result in intact and infectious particles.[ citation needed ]

When a vaccine is administered, the antigen will be taken up by an antigen-presenting cell (APC) and transported to a draining lymph node in vaccinated people. The APC will place a piece of the antigen, an epitope, on its surface along with a major histocompatibility complex (MHC) molecule. It can now interact with and activate T cells. The resulting helper T cells will then stimulate an antibody-mediated or cell-mediated immune response and develop an antigen-specific adaptive response. [8] [9] This process creates an immunological memory against the specific pathogen and allows the immune system to respond more effectively and rapidly after subsequent encounters with that pathogen. [6] [8] [9]

Inactivated vaccines tend to produce an immune response that is primarily antibody-mediated. [3] [10] However, deliberate adjuvant selection allows inactivated vaccines to stimulate a more robust cell-mediated immune response. [1] [7]

Types

Inactivated vaccines can be divided by the method used for killing the pathogen. [4] [1]

A minority of sources use the term inactivated vaccines to broadly refer to non-live vaccines. Under this definition, inactivated vaccines also include subunit vaccines and toxoid vaccines. [3] [8]

Examples

Types include: [15]

Advantages and disadvantages

Advantages

Disadvantages

Related Research Articles

<span class="mw-page-title-main">Vaccine</span> Pathogen-derived preparation that provides acquired immunity to an infectious disease

A vaccine is a biological preparation that provides active acquired immunity to a particular infectious or malignant disease. The safety and effectiveness of vaccines has been widely studied and verified. A vaccine typically contains an agent that resembles a disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and recognize further and destroy any of the microorganisms associated with that agent that it may encounter in the future.

<span class="mw-page-title-main">DNA vaccine</span> Vaccine containing DNA

A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response.

In biology, immunity is the state of being insusceptible or resistant to a noxious agent or process, especially a pathogen or infectious disease. Immunity may occur naturally or be produced by prior exposure or immunization.

<span class="mw-page-title-main">Original antigenic sin</span> Immune phenomenon

Original antigenic sin, also known as antigenic imprinting, the Hoskins effect, or immunological imprinting, is the propensity of the immune system to preferentially use immunological memory based on a previous infection when a second slightly different version of that foreign pathogen is encountered. This leaves the immune system "trapped" by the first response it has made to each antigen, and unable to mount potentially more effective responses during subsequent infections. Antibodies or T-cells induced during infections with the first variant of the pathogen are subject to repertoire freeze, a form of original antigenic sin.

A breakthrough infection is a case of illness in which a vaccinated individual becomes infected with the illness, because the vaccine has failed to provide complete immunity against the pathogen. Breakthrough infections have been identified in individuals immunized against a variety of diseases including mumps, varicella (Chickenpox), influenza, and COVID-19. The characteristics of the breakthrough infection are dependent on the virus itself. Often, infection of the vaccinated individual results in milder symptoms and shorter duration than if the infection were contracted naturally.

In immunology, an adjuvant is a substance that increases or modulates the immune response to a vaccine. The word "adjuvant" comes from the Latin word adiuvare, meaning to help or aid. "An immunologic adjuvant is defined as any substance that acts to accelerate, prolong, or enhance antigen-specific immune responses when used in combination with specific vaccine antigens."

<span class="mw-page-title-main">Antibody-dependent enhancement</span> Antibodies rarely making an infection worse instead of better

Antibody-dependent enhancement (ADE), sometimes less precisely called immune enhancement or disease enhancement, is a phenomenon in which binding of a virus to suboptimal antibodies enhances its entry into host cells, followed by its replication. The suboptimal antibodies can result from natural infection or from vaccination. ADE may cause enhanced respiratory disease, but is not limited to respiratory disease. It has been observed in HIV, RSV virus and Dengue virus and is monitored for in vaccine development.

An attenuated vaccine is a vaccine created by reducing the virulence of a pathogen, but still keeping it viable. Attenuation takes an infectious agent and alters it so that it becomes harmless or less virulent. These vaccines contrast to those produced by "killing" the pathogen.

Immune stimulating complexes (ISCOMs) are spherical open cage-like structures (typically 40 nm in diameter) that are spontaneously formed when mixing together cholesterol, phospholipids and Quillaja saponins under a specific stoichiometry. The complex displays immune stimulating properties and is thus mainly used as a vaccine adjuvant in order to induce a stronger immune response and longer protection. A specific adjuvant based on ISCOM technology is Matrix-M.

A subunit vaccine is a vaccine that contains purified parts of the pathogen that are antigenic, or necessary to elicit a protective immune response. Subunit vaccine can be made from dissembled viral particles in cell culture or recombinant DNA expression, in which case it is a recombinant subunit vaccine.

Peptide-based synthetic vaccines are subunit vaccines made from peptides. The peptides mimic the epitopes of the antigen that triggers direct or potent immune responses. Peptide vaccines can not only induce protection against infectious pathogens and non-infectious diseases but also be utilized as therapeutic cancer vaccines, where peptides from tumor-associated antigens are used to induce an effective anti-tumor T-cell response.

SAV001-H is the first candidate preventive HIV vaccine using a killed or "dead" version of the HIV-1 virus.

Nasal- or nasopharynx- associated lymphoid tissue (NALT) represents immune system of nasal mucosa and is a part of mucosa-associated lymphoid tissue (MALT) in mammals. It protects body from airborne viruses and other infectious agents. In humans, NALT is considered analogous to Waldeyer's ring.

A nasal vaccine is a vaccine administered through the nose that stimulates an immune response without an injection. It induces immunity through the inner surface of the nose, a surface that naturally comes in contact with many airborne microbes. Nasal vaccines are emerging as an alternative to injectable vaccines because they do not use needles and can be introduced through the mucosal route. Nasal vaccines can be delivered through nasal sprays to prevent respiratory infections, such as influenza.

<span class="mw-page-title-main">Vaccine ingredients</span> Ingredients used in a vaccine dose

A vaccine dose contains many ingredients very little of which is the active ingredient, the immunogen. A single dose may have merely nanograms of virus particles, or micrograms of bacterial polysaccharides. A vaccine injection, oral drops or nasal spray is mostly water. Other ingredients are added to boost the immune response, to ensure safety or help with storage, and a tiny amount of material is left-over from the manufacturing process. Very rarely, these materials can cause an allergic reaction in people who are very sensitive to them.

<span class="mw-page-title-main">Viral vector vaccine</span> Type of vaccine

A viral vector vaccine is a vaccine that uses a viral vector to deliver genetic material (DNA) that can be transcribed by the recipient's host cells as mRNA coding for a desired protein, or antigen, to elicit an immune response. As of April 2021, six viral vector vaccines, four COVID-19 vaccines and two Ebola vaccines, have been authorized for use in humans.

A genetic vaccine is a vaccine that contains nucleic acids such as DNA or RNA that lead to protein biosynthesis of antigens within a cell. Genetic vaccines thus include DNA vaccines, RNA vaccines and viral vector vaccines.

Type A influenza vaccine is for the prevention of infection of influenza A virus and also the influenza-related complications. Different monovalent type A influenza vaccines have been developed for different subtypes of influenza A virus including H1N1 and H5N1. Both intramuscular injection or intranasal spray are available on market. Unlike the seasonal influenza vaccines which are used annually, they are usually used during the outbreak of certain strand of subtypes of influenza A. Common adverse effects includes injection site reaction and local tenderness. Incidences of headache and myalgia were also reported with H1N1 whereas cases of fever has also been demonstrated with H5N1 vaccines. It is stated that immunosuppressant therapies would reduce the therapeutic effects of vaccines and that people with egg allergy should go for the egg-free preparations.

Whole-cell vaccines are a type of vaccine that has been prepared in the laboratory from entire cells. Such vaccines simultaneously contain multiple antigens to activate the immune system. They induce antigen-specific T-cell responses.

Live recombinant vaccines are biological preparations that improve immunity through the use of live bacteria or viruses that are genetically modified. These live pathogens are biologically engineered to express exogenous antigens in the cytoplasm of target cells, triggering immune responses as a result. This form of vaccine combines the beneficial features of attenuated and recombinant vaccines, providing the preparation with attenuated vaccines’ long-lasting immunity and recombinant vaccines’ genetically engineered precision and safety.

References

  1. 1 2 3 4 Petrovsky N, Aguilar JC (October 2004). "Vaccine adjuvants: current state and future trends". Immunology and Cell Biology. 82 (5): 488–496. doi:10.1111/j.0818-9641.2004.01272.x. PMID   15479434. S2CID   154670.
  2. Plotkin SA, Plotkin SL (October 2011). "The development of vaccines: how the past led to the future". Nature Reviews. Microbiology (published 2011-10-03). 9 (12): 889–893. doi: 10.1038/nrmicro2668 . PMID   21963800. S2CID   32506969.
  3. 1 2 3 4 Wodi AP, Morelli V (2021). "Chapter 1: Principles of Vaccination" (PDF). In Hall E, Wodi AP, Hamborsky J, Morelli V, Schilllie S (eds.). Epidemiology and Prevention of Vaccine-Preventable Diseases (14th ed.). Washington, D.C.: Public Health Foundation, Centers for Disease Control and Prevention.
  4. 1 2 3 WHO Expert Committee on Biological Standardization (19 June 2019). "Influenza". World Health Organization (WHO). Retrieved 22 October 2021.
  5. 1 2 "Types of Vaccines". Vaccines.gov. U.S. Department of Health and Human Services. 23 July 2013. Archived from the original on 9 June 2013. Retrieved 16 May 2016.
  6. 1 2 3 4 5 6 Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M (March 2018). "Understanding modern-day vaccines: what you need to know". Annals of Medicine. 50 (2): 110–120. doi: 10.1080/07853890.2017.1407035 . PMID   29172780. S2CID   25514266.
  7. 1 2 3 Slifka MK, Amanna I (May 2014). "How advances in immunology provide insight into improving vaccine efficacy". Vaccine. 32 (25): 2948–2957. doi:10.1016/j.vaccine.2014.03.078. PMC   4096845 . PMID   24709587.
  8. 1 2 3 4 5 6 Pollard AJ, Bijker EM (February 2021). "A guide to vaccinology: from basic principles to new developments". Nature Reviews. Immunology. 21 (2): 83–100. doi:10.1038/s41577-020-00479-7. PMC   7754704 . PMID   33353987.
  9. 1 2 3 4 Karch CP, Burkhard P (November 2016). "Vaccine technologies: From whole organisms to rationally designed protein assemblies". Biochemical Pharmacology. 120: 1–14. doi:10.1016/j.bcp.2016.05.001. PMC   5079805 . PMID   27157411.
  10. 1 2 3 Plotkin S, Orenstein WA, Offit PA, eds. (2018). "Technologies for Making New Vaccines". Plotkin's vaccines (7th ed.). Philadelphia, PA: Elsevier. ISBN   978-0-323-39302-7. OCLC   989157433.
  11. Sanders B, Koldijk M, Schuitemaker H (2015). "Inactivated Viral Vaccines". Vaccine Analysis: Strategies, Principles, and Control. pp. 45–80. doi:10.1007/978-3-662-45024-6_2. ISBN   978-3-662-45023-9. PMC   7189890 . S2CID   81212732.
  12. Hotez, Peter J.; Bottazzi, Maria Elena (27 January 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55–64. doi: 10.1146/annurev-med-042420-113212 . ISSN   0066-4219. PMID   34637324. S2CID   238747462 . Retrieved 14 April 2022.
  13. Chen J, Wang J, Zhang J, Ly H (2021). "Advances in Development and Application of Influenza Vaccines". Frontiers in Immunology. 12: 711997. doi: 10.3389/fimmu.2021.711997 . PMC   8313855 . PMID   34326849.
  14. National Advisory Committee on Immunization (NACI) (May 2018). NACI literature review on the comparative effectiveness and immunogenicity of subunit and split virus inactivated influenza vaccines in adults 65 years of age and older. ISBN   9780660264387. Cat.: HP40-213/2018E-PDF; Pub.: 180039.{{cite book}}: |website= ignored (help)
  15. Ghaffar A, Haqqi T. "Immunization". Immunology. The Board of Trustees of the University of South Carolina. Archived from the original on 26 February 2014. Retrieved 2009-03-10.
  16. 1 2 Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73–78. doi: 10.4103/0974-777X.77299 . PMC   3068582 . PMID   21572612.
  17. "Inactivated whole-cell (killed antigen) vaccines - WHO Vaccine Safety Basics". vaccine-safety-training.org. World Health Organization (WHO). Retrieved 2021-11-11.