Malaria vaccine

Last updated

Malaria vaccine
Vaccine description
Target Malaria
Vaccine type Protein subunit
Clinical data
Trade names Mosquirix
Routes of
administration
Intramuscular [1]
ATC code
Legal status
Legal status
  • EU:Rx-only [1]
  • Approved in Ghana, Nigeria
Identifiers
CAS Number
ChemSpider
  • none

Malaria vaccines are vaccines that prevent malaria, a mosquito-borne infectious disease which affected an estimated 249 million people globally in 85 malaria-endemic countries and areas and caused 608,000 deaths in 2022. [2] The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix. [1] As of April 2023, the vaccine has been given to 1.5 million children living in areas with moderate-to-high malaria transmission. [3] It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years. [4] [5] The vaccine reduces hospital admissions from severe malaria by around 30%. [4]

Contents

Research continues with other malaria vaccines. The most effective malaria vaccine is the R21/Matrix-M, with a 77% efficacy rate shown in initial trials and significantly higher antibody levels than with the RTS,S vaccine. It is the first vaccine that meets the World Health Organization's (WHO) goal of a malaria vaccine with at least 75% efficacy, [6] [7] and only the second malaria vaccine to be recommended by the WHO. [8] In April 2023, Ghana's Food and Drugs Authority approved the use of the R21 vaccine for use in children aged between five months and three years old. [9] Following Ghana's decision, Nigeria provisionally approved the R21 vaccine. [10]

Approved vaccines

RTS,S

RTS,S recombinant protein viruslike particle RTS S recombinant protein viruslike particle.svg
RTS,S recombinant protein viruslike particle

RTS,S/AS01 (brand name Mosquirix) [1] is the first malaria vaccine approved for public use. It requires at least three doses in infants by age 2, with a fourth dose extending the protection for another 1–2 years. [4] The vaccine reduces hospital admissions from severe malaria by around 30%. [4]

RTS,S was developed by PATH Malaria Vaccine Initiative (MVI) and GlaxoSmithKline (GSK) with support from the Bill and Melinda Gates Foundation. It is a recombinant vaccine, consisting of the Plasmodium falciparum circumsporozoite protein (CSP) from the pre-erythrocytic stage. The CSP antigen causes the production of antibodies capable of preventing the invasion of hepatocytes and also elicits a cellular response enabling the destruction of infected hepatocytes. The CSP vaccine presented problems in the trial stage due to its poor immunogenicity. RTS,S attempted to avoid these by fusing the protein with a surface antigen from hepatitis B virus, creating a more potent and immunogenic vaccine. When tested in trials as an emulsion of oil in water and with the added adjuvants of monophosphoryl A and QS21 (SBAS2), the vaccine gave protective immunity to 7 out of 8 volunteers when challenged with P. falciparum. [11]

RTS,S was engineered using genes from the outer protein of P. falciparum malaria parasite and a portion of a hepatitis B virus plus a chemical adjuvant to boost the immune response. Infection is prevented by inducing high antibody titers that block the parasite from infecting the liver. [12] In November 2012, a Phase III trial of RTS,S found that it provided modest protection against both clinical and severe malaria in young infants. [13]

In October 2013, preliminary results of a phase III clinical trial indicated that RTS,S/AS01 reduced the number of cases among young children by almost 50 percent and among infants by around 25 percent. The study ended in 2014. The effects of a booster dose were positive, even though overall efficacy seems to wane with time. After four years, reductions were 36 percent for children who received three shots and a booster dose. Missing the booster dose reduced the efficacy against severe malaria to a negligible effect. The vaccine was shown to be less effective for infants. Three doses of vaccine plus a booster reduced the risk of clinical episodes by 26 percent over three years but offered no significant protection against severe malaria. [14]

In a bid to accommodate a larger group and guarantee sustained availability for the general public, GSK applied for a marketing license with the European Medicines Agency (EMA) in July 2014. [15] GSK treated the project as a non-profit initiative, with most funding coming from the Gates Foundation, a major contributor to malaria eradication. [16]

In July 2015, Mosquirix received a positive scientific opinion from the European Medicines Agency (EMA) on the proposal for the vaccine to be used to vaccinate children aged 6 weeks to 17 months outside the European Union. [17] [1] A pilot project for vaccination was launched on 23 April 2019 in Malawi, on 30 April 2019 in Ghana, and on 13 September 2019 in Kenya. [18] [19]

In October 2021, the vaccine was endorsed by the World Health Organization for "broad use" in children, making it the first malaria vaccine to receive this recommendation. [20] [21] [22]

The vaccine was prequalified by WHO in July 2022. [3] In August 2022, UNICEF awarded a contract to GSK to supply 18 million doses of the RTS,S vaccine over three years. More than 30 countries have areas with moderate to high malaria transmission where the vaccine is expected to be useful. [23]

As of April 2023, 1.5 million children in Ghana, Kenya, and Malawi had received at least one injection of the vaccine, with more than 4.5 million doses of the vaccine administered through the countries' routine immunization programs. [3] The next 9 countries to receive the vaccine over the next 2 years are Benin, Burkina Faso, Burundi, Cameroon, the Democratic Republic of the Congo, Liberia, Niger, Sierra Leone, and Uganda. [24]

R21/Matrix-M

Comparison between RTS,S and R21 RTS S vs R21 recombinant protein comparison.svg
Comparison between RTS,S and R21

The most effective malaria vaccine is R21/Matrix-M, with 77% efficacy shown in initial trials. It is the first vaccine that meets the World Health Organization's goal of a malaria vaccine with at least 75% efficacy. [6] It was developed through a collaboration involving the Jenner Institute at the University of Oxford, the Kenya Medical Research Institute, the London School of Hygiene and Tropical Medicine, Novavax, and the Serum Institute of India. The trials took place at the Institut de Recherche en Sciences de la Santé in Nanoro, Burkina Faso with Halidou Tinto as the principal investigator. [7] The R21 vaccine uses a circumsporozoite protein (CSP) antigen, at a higher proportion than the RTS,S vaccine. It uses the same HBsAg-linked recombinant structure but contains no excess HBsAg. [25] It includes the Matrix-M adjuvant that is also utilized in the Novavax COVID-19 vaccine. [26]

A phase II trial was reported in April 2021, with a vaccine efficacy of 77% and antibody levels significantly higher than with the RTS,S vaccine. A booster shot of R21/Matrix-M that is given 12 months after the primary three-dose regimen maintains a high efficacy against malaria, providing high protection against symptomatic malaria for at least 2 years. [27] A phase III trial with 4,800 children across four African countries was reported in November 2022, demonstrating vaccine efficacy of 74% against a severe malaria episode. [28] Further data from multiple studies is being collected. [29] As of April 2023 data from the phase III study had not been formally published, but late-stage data from the study was shared with regulatory authorities. [9]

Ghana's Food and Drugs Authority approved the use of the R21 vaccine in April 2023, for use in children aged between five months to three years old. The Serum Institute of India is preparing to produce between 100–200 million doses of the vaccine per year, and is constructing a vaccine factory in Accra, Ghana. [9] [30] Following Ghana's decision, Nigeria provisionally approved the R21 vaccine. [10]

In October 2023 the WHO endorsed the R21 vaccine against malaria, end of December 2023 it was added to the list of Prequalified Vaccines. [31]

Further developments for a vaccine that targets the erythrocytic stage of the Malaria parasite have been made, provisionally named RH5.1/Matrix-M, which it is hoped will combine with the R21/Matrix-M pre-erythrocytic vaccine to create an even more efficacious second-generation Malaria vaccine. [32] [33]

Agents under development

Screened cup of malaria-infected mosquitoes which will infect a volunteer in a clinical trial Mosquitoes in cup.jpg
Screened cup of malaria-infected mosquitoes which will infect a volunteer in a clinical trial

A completely effective vaccine is not available for malaria, although several vaccines are under development. [34] Multiple vaccine candidates targeting the blood-stage of the parasite's lifecycle have been insufficient on their own. [35] Several potential vaccines targeting the pre-erythrocytic stage are being developed, with RTS,S and R-21/Matrix-M the two approved options so far. [36] [13] [30]

Nanoparticle enhancement of RTS,S

In 2015, researchers used a repetitive antigen display technology to engineer a nanoparticle that displayed malaria-specific B cell and T cell epitopes. The particle exhibited icosahedral symmetry and carried on its surface up to 60 copies of the RTS,S protein. The researchers claimed that the density of the protein was much higher than the 14% of the GSK vaccine. [37] [38]

PfSPZ vaccine

The PfSPZ vaccine is a candidate malaria vaccine developed by Sanaria using radiation-attenuated sporozoites to elicit an immune response. Clinical trials have been promising, with trials in Africa, Europe, and the US protecting over 80% of volunteers. [39] It has been subject to some criticism regarding the ultimate feasibility of large-scale production and delivery in Africa since it must be stored in liquid nitrogen.

The PfSPZ vaccine candidate was granted fast track designation by the U.S. Food and Drug Administration in September 2016. [40]

In April 2019, a phase III trial in Bioko was announced, scheduled to start in early 2020. [41]

Other developments

Considerations

The task of developing a preventive vaccine for malaria is a complex process. There are a number of considerations to be made concerning what strategy a potential vaccine should adopt.

Parasite diversity

P. falciparum has demonstrated the capability, through the development of multiple drug-resistant parasites, for evolutionary change. The Plasmodium species has a very high rate of replication, much higher than that needed to ensure transmission in the parasite's lifecycle.[ citation needed ] This enables pharmaceutical treatments that are effective at reducing the reproduction rate, but not halting it, to exert a high selection pressure, thus favoring the development of resistance. The process of evolutionary change is one of the key considerations necessary when considering potential vaccine candidates. The development of resistance could cause a significant reduction in the efficacy of any potential vaccine thus rendering useless a carefully developed and effective treatment. [46]

Choosing to address the symptom or the source

The parasite induces two main response types from the human immune system. These are anti-parasitic immunity and anti-toxic immunity.

Taking this information into consideration an ideal vaccine candidate would attempt to generate a more substantial cell-mediated and antibody response on parasite presentation. This would have the benefit of increasing the rate of parasite clearance, thus reducing the experienced symptoms and providing a level of consistent future immunity against the parasite.

Potential targets

Potential vaccine targets in the malaria lifecycle (Doolan and Hoffman)
Parasite stageTarget
Sporozoite Hepatocyte invasion; direct anti-sporozite
Hepatozoite Direct anti-hepatozoite.
Asexual erythrocyticAnti-host erythrocyte, antibodies blocking invasion; anti receptor ligand, anti-soluble toxin
Gametocyte Anti-gametocyte. Anti-host erythrocyte, antibodies blocking fertilisation, antibodies blocking egress from the mosquito midgut.

By their very nature, protozoa are more complex organisms than bacteria and viruses, with more complicated structures and lifecycles. This presents problems in vaccine development but also increases the number of potential targets for a vaccine. These have been summarised into the lifecycle stage and the antibodies that could potentially elicit an immune response.[ citation needed ]

The epidemiology of malaria varies enormously across the globe and has led to the belief that it may be necessary to adopt very different vaccine development strategies to target different populations. A Type 1 vaccine is suggested for those exposed mostly to P. falciparum malaria in sub-Saharan Africa, with the primary objective to reduce the number of severe malaria cases and deaths in infants and children exposed to high transmission rates. The Type 2 vaccine could be thought of as a 'travelers' vaccine,' aiming to prevent all clinical symptoms in individuals with no previous exposure. This is another major public health problem, with malaria presenting as one of the most substantial threats to travelers' health. Problems with the available pharmaceutical therapies include costs, availability, adverse effects, contraindications, inconvenience, and compliance, many of which would be reduced or eliminated if an effective (greater than 85–90%) vaccine was developed. [ citation needed ]

The lifecycle of the malaria parasite is particularly complex, presenting initial developmental problems. Despite the huge number of vaccines available, none target parasitic infections. The distinct developmental stages involved in the lifecycle present numerous opportunities for targeting antigens, thus potentially eliciting an immune response. Theoretically, each developmental stage could have a vaccine developed specifically to target the parasite. Moreover, any vaccine produced would ideally have the ability to be of therapeutic value as well as preventing further transmission and is likely to consist of a combination of antigens from different phases of the parasite's development. More than 30 of these antigens are being researched[ when? ] by teams all over the world in the hope of identifying a combination that can elicit immunity in the inoculated individual. Some of the approaches involve surface expression of the antigen, inhibitory effects of specific antibodies on the lifecycle, and the protective effects through immunization or passive transfer of antibodies between an immune and a non-immune host. The majority of research into malarial vaccines has focused on the Plasmodium falciparum strain due to the high mortality caused by the parasite and the ease of carrying out in vitro/in vivo studies. The earliest vaccines attempted to use the parasitic circumsporozoite protein (CSP). This is the most dominant surface antigen of the initial pre-erythrocytic phase. However, problems were encountered due to low efficacy, reactogenicity and low immunogenicity. [ citation needed ]

Mix of antigenic components

Increasing the potential immunity generated against Plasmodia can be achieved by attempting to target multiple phases in the lifecycle. This is additionally beneficial in reducing the possibility of resistant parasites developing. The use of multiple-parasite antigens can therefore have a synergistic or additive effect.

One of the most successful vaccine candidates in clinical trials consists of recombinant antigenic proteins to the circumsporozoite protein. [57]

History

Individuals who are exposed to the parasite in endemic countries develop acquired immunity against disease and death. Such immunity does not, however, prevent malarial infection; immune individuals often harbour asymptomatic parasites in their blood. This does, however, imply that it is possible to create an immune response that protects against the harmful effects of the parasite.

Research shows that if immunoglobulin is taken from immune adults, purified, and then given to individuals who have no protective immunity, some protection can be gained. [58]

Irradiated mosquitoes

In 1967, it was reported that a level of immunity to the Plasmodium berghei parasite could be given to mice by exposing them to sporozoites that had been irradiated by x-rays. [59] Subsequent human studies in the 1970s showed that humans could be immunized against Plasmodium vivax and Plasmodium falciparum by exposing them to the bites of significant numbers of irradiated mosquitos. [60]

From 1989 to 1999, eleven volunteers recruited from the United States Public Health Service, United States Army, and United States Navy were immunized against Plasmodium falciparum by the bites of 1001–2927 mosquitoes that had been irradiated with 15,000 rads of gamma rays from a Co-60 or Cs-137 source. [61] This level of radiation is sufficient to attenuate the malaria parasites so that, while they can still enter hepatic cells, they cannot develop into schizonts nor infect red blood cells. [61] Over 42 weeks, 24 of 26 tests on the volunteers showed that they were protected from malaria. [61]

Related Research Articles

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects vertebrates and Anopheles mosquitoes. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria. The mosquito vector is itself harmed by Plasmodium infections, causing reduced lifespan.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

A trophozoite is the activated, feeding stage in the life cycle of certain protozoa such as malaria-causing Plasmodium falciparum and those of the Giardia group. The complementary form of the trophozoite state is the thick-walled cyst form. They are often different from the cyst stage, which is a protective, dormant form of the protozoa. Trophozoites are often found in the host's body fluids and tissues and in many cases, they are the form of the protozoan that causes disease in the host. In the protozoan, Entamoeba histolytica it invades the intestinal mucosa of its host, causing dysentery, which aid in the trophozoites traveling to the liver and leading to the production of hepatic abscesses.

<span class="mw-page-title-main">Gametocyte</span> Eukaryotic germ stem cell

A gametocyte is a eukaryotic germ cell that divides by mitosis into other gametocytes or by meiosis into gametids during gametogenesis. Male gametocytes are called spermatocytes, and female gametocytes are called oocytes.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<span class="mw-page-title-main">Merozoite surface protein</span>

Merozoitesurface proteins are both integral and peripheral membrane proteins found on the surface of a merozoite, an early life cycle stage of a protozoan. Merozoite surface proteins, or MSPs, are important in understanding malaria, a disease caused by protozoans of the genus Plasmodium. During the asexual blood stage of its life cycle, the malaria parasite enters red blood cells to replicate itself, causing the classic symptoms of malaria. These surface protein complexes are involved in many interactions of the parasite with red blood cells and are therefore an important topic of study for scientists aiming to combat malaria.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

A blocking antibody is an antibody that does not have a reaction when combined with an antigen, but prevents other antibodies from combining with that antigen. This function of blocking antibodies has had a variety of clinical and experimental uses.

Malaria prophylaxis is the preventive treatment of malaria. Several malaria vaccines are under development.

<span class="mw-page-title-main">Malaria antigen detection tests</span> Medical diagnostic method

Malaria antigen detection tests are a group of commercially available rapid diagnostic tests of the rapid antigen test type that allow quick diagnosis of malaria by people who are not otherwise skilled in traditional laboratory techniques for diagnosing malaria or in situations where such equipment is not available. There are currently over 20 such tests commercially available. The first malaria antigen suitable as target for such a test was a soluble glycolytic enzyme Glutamate dehydrogenase. None of the rapid tests are currently as sensitive as a thick blood film, nor as cheap. A major drawback in the use of all current dipstick methods is that the result is essentially qualitative. In many endemic areas of tropical Africa, however, the quantitative assessment of parasitaemia is important, as a large percentage of the population will test positive in any qualitative assay.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of malaria in pregnancy which is life-threatening to both pregnant women and unborn fetuses. PAM occurs when a pregnant woman contracts malaria, generally as a result of Plasmodium falciparum infection, and because she is pregnant, is at greater risk of associated complications such as placental malaria. Placental malaria interferes with the transmission of vital substances through the fetal placenta, which can result in stillbirths, miscarriages, and dangerously low birth weights.

<span class="mw-page-title-main">RTS,S</span> Malaria vaccine

RTS,S/AS01 is a recombinant protein-based malaria vaccine. It is one of two malaria vaccines approved. As of April 2022, the vaccine has been given to 1 million children living in areas with moderate-to-high malaria transmission, with millions more doses to be provided as the vaccine's production expands. 18 million doses have been allocated for 2023-2025. It requires at least three doses in infants by age 2, with a fourth dose extending the protection for another 1–2 years. The vaccine reduces hospital admissions from severe malaria by around 30% and reduces toddler deaths by 15%.

Russell J. Howard is an Australian-born executive, entrepreneur and scientist. He was a pioneer in the fields of molecular parasitology, especially malaria, and in leading the commercialisation of one of the most important methods used widely today in molecular biology today called “DNA shuffling" or "Molecular breeding", a form of "Directed evolution".

Circumsporozoite protein (CSP) is a secreted protein of the sporozoite stage of the malaria parasite and is the antigenic target of RTS,S and other malaria vaccines. The amino-acid sequence of CSP consists of an immunodominant central repeat region flanked by conserved motifs at the N- and C- termini that are implicated in protein processing as the parasite travels from the mosquito to the mammalian vector. The amino acid sequence of CSP was determined in 1984.

PfSPZ Vaccine is a metabolically active non-replicating whole sporozoite (SPZ) malaria vaccine being developed by Sanaria against Plasmodium falciparum (Pf) malaria. Clinical trials have been safe, extremely well tolerated and highly efficacious. The first generation PfSPZ product is attenuated by gamma irradiation; the second generation vaccines PfSPZ-CVac and PfSPZ LARC2 are, respectively, attenuated chemically and genetically. Multiple studies are ongoing with trials of the PfSPZ vaccines. All three products are produced using the same manufacturing process. These products are stored and distributed below -150 °C using liquid nitrogen (LN2) vapor phase (LNVP) freezers and cryoshippers.

Sanaria is a biotechnology company founded to develop whole-parasite vaccines protective against malaria. Sanaria is also developing monoclonal antibodies protective against malaria, vaccines against diarrheal diseases, immunotherapeutics for disease of the liver, and related products for us in malaria research. Sanaria's vaccines are based on the use of the sporozoite (SPZ) stage of the malaria parasite, Plasmodium, as an immunogen, and as a carrier for immunomodulatory molecules.

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.

Reticulocyte binding protein homologs (RHs) are a superfamily of proteins found in Plasmodium responsible for cell invasion. Together with the family of erythrocyte binding-like proteins (EBLs) they make up the two families of invasion proteins universal to Plasmodium. The two families function cooperatively.

<span class="mw-page-title-main">Stephen L. Hoffman</span> American physician-scientist

Stephen L. Hoffman is an American physician-scientist, tropical medicine specialist and vaccinologist, who is the founder and chief executive and scientific officer of Sanaria Inc., a company dedicated to developing PfSPZ vaccines to prevent malaria.

References

  1. 1 2 3 4 5 "Mosquirix: Opinion on medicine for use outside EU". European Medicines Agency (EMA). Archived from the original on 23 November 2019. Retrieved 22 November 2019.
  2. World Malaria Report 2023 - World Health Organization. Switzerland: World Health Organization. 30 November 2023. ISBN   978-92-4-006489-8.
  3. 1 2 3 "Q&A on RTS,S malaria vaccine - WHO". World Health Organization . 19 April 2023. Retrieved 29 April 2023.
  4. 1 2 3 4 "First malaria vaccine hits 1 million dose milestone — although it has its shortcomings". NPR. 13 May 2022. Archived from the original on 13 November 2022. Retrieved 2 January 2023.
  5. World Health Organization (2022). "Malaria vaccine: WHO position paper – March 2022". Weekly Epidemiological Record. 97 (9): 60–78. hdl: 10665/352337 .
  6. 1 2 Roxby P (23 April 2021). "Malaria vaccine hailed as potential breakthrough". BBC News . Archived from the original on 24 April 2021. Retrieved 24 April 2021.
  7. 1 2 "Malaria vaccine becomes first to achieve WHO-specified 75% efficacy goal". EurekAlert! . 23 April 2021. Archived from the original on 27 July 2021. Retrieved 24 April 2021.
  8. "WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization". 2 October 2023. Retrieved 4 October 2023.
  9. 1 2 3 Gallagher J (12 April 2023). "Ghana first to approve 'world-changer' malaria vaccine". BBC News. Archived from the original on 13 April 2023. Retrieved 13 April 2023.
  10. 1 2 "The country with the highest rate of malaria deaths in the world has approved Oxford's vaccine". Quartz. 18 April 2023. Retrieved 19 April 2023.
  11. Foquet L, Hermsen CC, van Gemert GJ, Van Braeckel E, Weening KE, Sauerwein R, et al. (January 2014). "Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection". The Journal of Clinical Investigation. 124 (1): 140–4. doi:10.1172/JCI70349. PMC   3871238 . PMID   24292709.
  12. 1 2 Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG, Kabwende AL, et al. (December 2012). "A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants". The New England Journal of Medicine. 367 (24): 2284–95. doi: 10.1056/NEJMoa1208394 . PMC   10915853 . PMID   23136909.
  13. Borghino D (27 April 2015). "Malaria vaccine candidate shown to prevent thousands of cases". www.gizmag.com. Archived from the original on 6 May 2016. Retrieved 11 June 2016.
  14. "GSK announces EU regulatory submission of malaria vaccine candidate RTS,S" (Press release). GSK. 24 July 2014. Archived from the original on 4 December 2016. Retrieved 30 July 2015.
  15. Kelland K (7 October 2013). "GSK aims to market world's first malaria vaccine". Reuters. Archived from the original on 18 January 2016. Retrieved 9 December 2013.
  16. "First malaria vaccine receives positive scientific opinion from EMA" (Press release). European Medicines Agency (EMA). 24 July 2015. Archived from the original on 3 October 2018. Retrieved 30 July 2015.
  17. Alonso P (19 June 2019). "Letter to partners – June 2019" (Press release). Wuxi: World Health Organization. Archived from the original on 31 January 2022. Retrieved 22 October 2019.
  18. "Malaria vaccine launched in Kenya: Kenya joins Ghana and Malawi to roll out landmark vaccine in pilot introduction" (Press release). Homa Bay: World Health Organization. 13 September 2019. Archived from the original on 22 October 2019. Retrieved 22 October 2019.
  19. Davies L (6 October 2021). "WHO endorses use of world's first malaria vaccine in Africa". The Guardian. Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  20. "WHO recommends groundbreaking malaria vaccine for children at risk" (Press release). World Health Organization. Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  21. Mandavilli A (6 October 2021). "A 'Historical Event': First Malaria Vaccine Approved by W.H.O." The New York Times . Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  22. "Millions more children to benefit from malaria vaccine as UNICEF secures supply". UNICEF . 16 August 2022. Archived from the original on 2 January 2023. Retrieved 2 January 2023.
  23. Devi S (July 2023). "12 countries to get first doses of malaria vaccine". Lancet. 402 (10397): 172. doi:10.1016/s0140-6736(23)01456-3. PMID   37454658. S2CID   259849056.
  24. Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. (May 2021). "Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial". The Lancet. 397 (10287): 1809–1818. doi:10.1016/S0140-6736(21)00943-0. PMC   8121760 . PMID   33964223.
  25. Lowe D (23 April 2021). "Great Malaria Vaccine News". Science Translational Medicine . Archived from the original on 15 April 2023. Retrieved 24 April 2021.
  26. Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. (December 2022). "Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial". The Lancet. Infectious Diseases. 22 (12): 1728–1736. doi: 10.1016/S1473-3099(22)00442-X . PMID   36087586. S2CID   252149462.
  27. Hein I (3 November 2022). "Malaria Vaccine Candidate 'Impressive' in Phase III Test". MedPage Today. Archived from the original on 22 January 2023. Retrieved 22 January 2023.
  28. Vogel G (3 November 2022). "New data buoy hopes for promising malaria vaccine—but questions remain". Science Magazine . Archived from the original on 4 November 2022. Retrieved 22 January 2022.
  29. 1 2 Grover N (12 April 2023). "Ghana first to approve Oxford's malaria vaccine". Reuters. Archived from the original on 13 April 2023. Retrieved 13 April 2023.
  30. "WHO prequalifies a second malaria vaccine, a significant milestone in prevention of the disease". www.who.int. Retrieved 11 January 2024.
  31. Natama HM, Salkeld J, Somé A, Soremekun S, Diallo S, Traoré O, et al. (December 2024). "Safety and efficacy of the blood-stage malaria vaccine RH5.1/Matrix-M in Burkina Faso: interim results of a double-blind, randomised, controlled, phase 2b trial in children". The Lancet. Infectious Diseases. doi:10.1016/S1473-3099(24)00752-7. PMID   39672183.{{cite journal}}: CS1 maint: overridden setting (link)
  32. "First vaccine against blood-stage malaria is well-tolerated and offers effective protection | University of Oxford". www.ox.ac.uk. 11 December 2024. Retrieved 28 December 2024.
  33. Abuga KM, Jones-Warner W, Hafalla JC (February 2021). "Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development". Parasite Immunology. 43 (2): e12795. doi:10.1111/pim.12795. PMC   7612353 . PMID   32981095.
  34. Graves P, Gelband H (October 2006). "Vaccines for preventing malaria (blood-stage)". The Cochrane Database of Systematic Reviews. 2006 (4): CD006199. doi:10.1002/14651858.CD006199. PMC   6532641 . PMID   17054281.
  35. Graves P, Gelband H (October 2006). "Vaccines for preventing malaria (pre-erythrocytic)". The Cochrane Database of Systematic Reviews. 2006 (4): CD006198. doi:10.1002/14651858.CD006198. PMC   6532586 . PMID   17054280.
  36. "Researcher's nanoparticle key to new malaria vaccine". Research & Development. 4 September 2014. Archived from the original on 11 August 2016. Retrieved 20 October 2023.
  37. Burkhard P, Lanar DE (2 December 2015). "Malaria vaccine based on self-assembling protein nanoparticles". Expert Review of Vaccines. 14 (12): 1525–7. doi:10.1586/14760584.2015.1096781. PMC   5019124 . PMID   26468608.
  38. "Nature report describes complete protection after 10 weeks with three doses of PfSPZ- CVac" (Press release). 15 February 2017. Archived from the original on 23 April 2021. Retrieved 26 August 2020.
  39. "SANARIA PfSPZ VACCINE AGAINST MALARIA RECEIVES FDA FAST TRACK DESIGNATION" (PDF). Sanaria Inc. 22 September 2016. Archived from the original (PDF) on 23 October 2016. Retrieved 23 January 2017.
  40. Butler D (April 2019). "Promising malaria vaccine to be tested in first large field trial". Nature. doi:10.1038/d41586-019-01232-4. PMID   32291409. S2CID   145852768.
  41. Graves P, Gelband H (April 2006). "Vaccines for preventing malaria (SPf66)". The Cochrane Database of Systematic Reviews. 2006 (2): CD005966. doi:10.1002/14651858.CD005966. PMC   6532709 . PMID   16625647.
  42. Nosten F, Luxemburger C, Kyle DE, Ballou WR, Wittes J, Wah E, et al. (September 1996). "Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Shoklo SPf66 Malaria Vaccine Trial Group". Lancet. 348 (9029): 701–707. doi:10.1016/s0140-6736(96)04465-0. PMID   8806288. S2CID   54282604.
  43. Ratanji KD, Derrick JP, Dearman RJ, Kimber I (April 2014). "Immunogenicity of therapeutic proteins: influence of aggregation". Journal of Immunotoxicology. 11 (2): 99–109. doi:10.3109/1547691X.2013.821564. PMC   4002659 . PMID   23919460.
  44. Heiberg T (15 January 2021). "South African scientists discover new chemicals that kill malaria parasite". Reuters. Archived from the original on 1 February 2021. Retrieved 2 February 2021.
  45. Kennedy DA, Read AF (December 2018). "Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance". Proceedings of the National Academy of Sciences of the United States of America. 115 (51): 12878–12886. Bibcode:2018PNAS..11512878K. doi: 10.1073/pnas.1717159115 . PMC   6304978 . PMID   30559199.
  46. Zhang VM, Chavchich M, Waters NC (March 2012). "Targeting protein kinases in the malaria parasite: update of an antimalarial drug target". Current Topics in Medicinal Chemistry. 12 (5): 456–72. doi:10.2174/156802612799362922. PMID   22242850. Archived from the original on 30 May 2013. Retrieved 23 March 2020.
  47. 1 2 Douglas AD, Williams AR, Illingworth JJ, Kamuyu G, Biswas S, Goodman AL, et al. (December 2011). "The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody". Nature Communications. 2 (12): 601. Bibcode:2011NatCo...2..601D. doi:10.1038/ncomms1615. PMC   3504505 . PMID   22186897.
  48. 1 2 Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. (November 2011). "Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum". Nature. 480 (7378): 534–7. Bibcode:2011Natur.480..534C. doi:10.1038/nature10606. PMC   3245779 . PMID   22080952.
  49. Martino M (21 December 2011). "New candidate vaccine neutralizes all tested strains of malaria parasite". fiercebiotech.com. FierceBiotech. Archived from the original on 20 April 2012. Retrieved 23 December 2011.
  50. Parish T (2 August 2012). "Lifting malaria's deadly veil: Mystery solved in quest for vaccine". Burnet Institute. Archived from the original on 18 August 2012. Retrieved 14 August 2012.
  51. Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJ, et al. (September 2012). "Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity". The Journal of Clinical Investigation. 122 (9): 3227–38. doi:10.1172/JCI62182. PMC   3428085 . PMID   22850879.
  52. Mullin E (13 January 2014). "Scientists capture key protein structures that could aid malaria vaccine design". fiercebiotechresearch.com. Archived from the original on 18 January 2014. Retrieved 16 January 2014.
  53. Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH (January 2014). "Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC". PLOS Pathogens. 10 (1): e1003869. doi: 10.1371/journal.ppat.1003869 . PMC   3887093 . PMID   24415938.
  54. Mullin E (27 May 2014). "Antigen Discovery could advance malaria vaccine". fiercebiotechresearch.com. Archived from the original on 4 March 2016. Retrieved 22 June 2014.
  55. Raj DK, Nixon CP, Nixon CE, Dvorin JD, DiPetrillo CG, Pond-Tor S, et al. (May 2014). "Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection". Science. 344 (6186): 871–7. Bibcode:2014Sci...344..871R. doi:10.1126/science.1254417. PMC   4184151 . PMID   24855263.
  56. Plassmeyer ML, Reiter K, Shimp RL, Kotova S, Smith PD, Hurt DE, et al. (September 2009). "Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate". The Journal of Biological Chemistry. 284 (39): 26951–63. doi: 10.1074/jbc.M109.013706 . PMC   2785382 . PMID   19633296.
  57. "Immunoglobulin Therapy & Other Medical Therapies for Antibody Deficiencies". Immune Deficiency Foundation. Archived from the original on 15 March 2020. Retrieved 30 September 2019.
  58. Nussenzweig RS, Vanderberg J, Most H, Orton C (October 1967). "Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei". Nature. 216 (5111): 160–2. Bibcode:1967Natur.216..160N. doi:10.1038/216160a0. PMID   6057225. S2CID   4283134.
  59. Clyde DF (May 1975). "Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites". The American Journal of Tropical Medicine and Hygiene. 24 (3): 397–401. doi:10.4269/ajtmh.1975.24.397. PMID   808142.
  60. 1 2 3 Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, et al. (April 2002). "Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites". The Journal of Infectious Diseases. 185 (8): 1155–64. doi: 10.1086/339409 . PMID   11930326.

Further reading