Plasmodium falciparum erythrocyte membrane protein 1

Last updated
PfEMP1, N-terminal segment
Identifiers
SymbolNTS
Pfam PF15447
InterPro IPR029210
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PfEMP DBL domain
Identifiers
SymbolPFEMP
Pfam PF03011
InterPro IPR004258
CATH 2yk0A03
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PfEMP CIDR1γ
Identifiers
SymbolCIDR1_gamma
Pfam PF18562
InterPro IPR041480
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PfEMP1, acidic terminal segment
Identifiers
SymbolATS
Pfam PF15445
InterPro IPR029211
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells (RBCs or erythrocytes) that are infected by the malarial parasite Plasmodium falciparum . PfEMP1 is synthesized during the parasite's blood stage (erythrocytic schizogony) inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs (through the processes of sequestration and rosetting), ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.

Contents

Introduction

Images of RBCs infected by P. falciparum using atomic force microscopy. (A) An early schizont with cluster of knobs at the center. Scale bar = 1 mm. Inset is the same image under light microscope. (B) A young trophozoite with knobs. Scale bar = 1 mm. (C) A close up of the cell membrane showing individual knobs. Scale bar = 200 nm. (D) A close up of a single knob. Scale bar = 75 nm. Erythrocyte knobs.png
Images of RBCs infected by P. falciparum using atomic force microscopy. (A) An early schizont with cluster of knobs at the center. Scale bar = 1 μm. Inset is the same image under light microscope. (B) A young trophozoite with knobs. Scale bar = 1 μm. (C) A close up of the cell membrane showing individual knobs. Scale bar = 200 nm. (D) A close up of a single knob. Scale bar = 75 nm.

Malaria is the deadliest among infectious diseases, accounting for approximately 429,000 human deaths in 2015 as of the latest estimate by the World Health Organization. [2] In humans, malaria can be caused by five Plasmodium parasites, namely P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. [3] P. falciparum is the most dangerous species, attributed to >99% of malaria's death toll, with 70% of these deaths occurring in children under the age of five years. [2] The parasites are transmitted through the bites of female mosquitos (of the species of Anopheles). Before invading the RBCs and causing the symptoms of malaria, the parasites first multiply in the liver. The daughter parasites called merozoites then only infect the RBCs. They undergo structural development inside the RBCs, becoming trophozoites and schizonts. It is during this period that malarial symptoms are produced. [4]

Unlike RBCs infected by other Plasmodium species, P. falciparum-infected RBCs had been known to spontaneously stick together. By the early 1980s, it was established that when the parasite (both the trophozoite and schizont forms) enters the blood stream and infects RBCs, the infected cells form knobs on their surface. Then they become sticky, and get attached to the walls (endothelium) of the blood vessels through a process called cytoadhesion, or cytoadherence. [5] Such attachment favours binding with and accumulation of other RBCs. This process is known as sequestration. [6] It is during this condition that the parasites induce an immune response (antigen-antibody reaction) and evade destruction in the spleen. [7] [8] Although the process and significance of sequestration were described in detail by two Italian physicians Amico Bignami and Ettore Marchiafava in the early 1890s, it took a century to discover the actual factor for the stickiness and virulence. [9] [10]

Discovery

PfEMP1 was discovered by Russell J. Howard and his colleagues at the US National Institutes of Health in 1984. Using the techniques of radioiodination and immunoprecipitation, they found a unique but yet unknown antigen from P. falciparum-infected RBCs that appeared to cause binding with other cells. [11] Since the antigenic protein could only be detected in infected cells, they asserted that the protein was produced by the malarial parasite, and not by RBCs. The antigen was large and appeared to be different in size in different strains of P. falciparum obtained from night monkey (Aotus). In one strain, called Camp (from Malaysia), the antigen was found to have a molecular size of approximately 285 kDa; while in the other, called St. Lucia (from El Salvador), it was approximately 260 kDa. Both antigens bind to cultured skin cancer (melanoma) cells. But the researchers failed to confirm whether or not the protein actually was an adhesion molecule to the wall of blood vessels. [12] Later in the same year, they found out that the unknown antigen was associated only with RBCs having small lumps called knobs on their surface. [13] The first human RBC antigen was reported in 1986. Howard's team found that the antigens from Gambian children, who were suffering from falciparum malaria, were similar to those from the RBCs of night monkey. They determined that the molecular sizes of the proteins ranged from 250 to 300 kDa. [14]

In 1987, they discovered another type of surface antigen from the same Camp and St. Lucia strains of malarial parasites. This was also a large-sized protein of about 300 kDa, but quite different from the antigens reported in 1984. The new protein was unable to bind to melanoma cells and present only inside the cell. Hence, they named the earlier protein Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), to distinguish it from the newly identified Plasmodium falciparum erythrocyte membrane protein 2 (PfEMP2). [15] The distinction was confirmed the next year, with an additional information that PfEMP1 is relatively less in number. [16]

Although some of the properties of PfEMP1 were firmly established, the protein was difficult to isolate due to its low occurrence. Five years after its discovery, one of the original researchers Irwin Sherman began to doubt the existence of PfEMP1 as a unique protein. [10] He argued that the antigen could be merely a surface protein of RBCs that changes upon infection with malarial parasites. [17] A consensus was achieved in 1995 following the identification (by cloning) of the gene for PfEMP1. The discovery of the genes was independently reported by Howard's team and two other teams at NIH. Howard's team identified two genes for PfEMP1, and recombinant protein products of these genes were shown to have antigenic and adhesive properties. They further affirmed that PfEMP1 is the key molecule in the ability of P. falciparum to evade the host's immune system. [18] Joseph D. Smith and others showed that PfEMP1 is actually a large family of proteins encoded by a multigene family called var. The gene products can bind to a variety of receptors including those on endothelial cells. [19] Xin-Zhuan Su and others showed that there could be more than 50 var genes which are distributed on different chromosomes of the malarial parasite. [20]

Structure

Typical structure of PfEMP1. NTS = N terminal segment. TMD = transmembrane domain. ATS = intracellular acidic terminal segment. PfEMP1 diagrammatic structure.jpg
Typical structure of PfEMP1. NTS = N terminal segment. TMD = transmembrane domain. ATS = intracellular acidic terminal segment.

PfEMP1 is a large family of proteins having high molecular weights ranging from 200 to 350 kDa. [21] The wide range of molecular size reflects extreme variation in the amino acid composition of the proteins. But all the PfEMP1 proteins can be described as having three basic structural components, namely, an extracellular domain (ECD), a transmembrane domain (TMD) and an intracellular acidic terminal segment (ATS). The extracellular domain is fully exposed on the cell surface, and is the most variable region. It consists of a number of sub-domains, including a short and conserved N terminal segment (NTS) at the outermost region, followed by a highly variable Duffy-binding-like (DBL) domain, sometimes a Ca2+-binding C2 domain, and then one or two cysteine-rich interdomain regions (CIDRs). [9] [22]

Duffy-binding-like domains are so named because of their similarity to the Duffy binding proteins of P. vivax and P. knowlesi . [23] There are six variant types of DBL, named DBLα, DBLβ, DBLγ, DBLδ, DBLε and DBLζ. CIDR is also divided into three classes: CIDRα, CIDRβ and CIDRγ. [24] Both DBL and CIDR have an additional type called PAM, so named because of their specific involvement in pregnancy-associated malaria (PAM). [25] In spite of the diverse DBL and CIDR proteins, the extracellular amino terminal region is partly conserved, consisting of about 60 amino acids of NTS, one each of DBLα and CIDR1 proteins in tandem. This semi-conserved DBLα-CIDR1 region is called the head structure. [26] The last CIDR region joins the TMD, which is embedded in the cell membrane. The TMD and ATS are highly conserved among different PfEMP1s, [27] and their structures have been solved using solution NMR ( PDB: 2LKL ). [28]

The head structure is followed by a variable combination of diverse DBL and CIDR proteins, and in many cases along with C2. This variation gives rise to different types of PfEMP1. The DBL-CIDR combination in a particular type of PfEMP1 protein is never random, but organized into specific sequences known as domain cassettes. [29] In some domain cassettes, there are only two or few DBL domains and CIDR domains, but in others they cover the entire length of the PfEMP1. These differences are responsible for different binding capacity among different PfEMP1s. [30] For instance, among the most well-known types, VAR3 (earlier called type 3 PfEMP1) is the smallest, consisting of only NTS with DBL1α and DBL2ε domains in the ECD. Its molecular size is approximately 150 kDa. [31] In domain cassette (DC) 4 type, the ECD is made up of three domains DBLα1.1/1.4, CIDRα1.6 and DBLβ3. The DBLβ3 domain contains a binding site for intercellular adhesion molecule 1 (ICAM1). This is particularly implicated with the development of brain infection. [32] VAR2CSA is atypical in having a single domain cassette that consists of three N terminal DBLPAM domains followed by three DBLε domains and one CIDRPAM. The seven domains always occur together. The usual NTS is absent. [33] [34] The protein specifically binds to chondroitin sulphate A (CSA); hence the name VAR2CSA. [35]

Synthesis and transport

Model of a knob structure of P. falciparum-infected RBC showing attachment of PfEMP1. PfEMP1 on knob.png
Model of a knob structure of P. falciparum-infected RBC showing attachment of PfEMP1.

The PfEMP1 proteins are regulated and produced (encoded) by about 60 different var genes, [37] but an individual P. falciparum would switch on only a single var gene at a time to produce only one type of PfEMP. [38] [39] The var genes are distributed in two exons. Exon 1 encodes amino acids of the highly variable ECD, [40] while exon 2 encodes those of the conserved TMD and ATS. [41] Based on their location in the chromosome and sequence, the var genes are generally classified into three major groups, A, B, and C, and two intermediate groups, B/A and B/C; [9] [42] or sometimes simply into five classes, upsA, upsB, upsC, upsD, and upsE respectively. [43] Groups A and B are found towards the terminal end (subtelomeric) region of the chromosome, while group C is in the central (centromeric) region. [44] [45]

Once the PfEMP1 protein is fully synthesized (translated), it is carried to the cytoplasm towards the RBC membrane. The NTS is crucial for such directional movement. [26] Within the cytoplasm, the newly synthesized protein is attached to a Golgi-like membranous vesicle called the Maurer's cleft. [46] Inside the Maurer's clefts is a family of proteins called Plasmodium helical interspersed subtelomeric (PHIST) proteins. Of the PHIST proteins, PFI1780w and PFE1605w bind the intracellular ATS of PfEMP1 during transport to the RBC membrane. [28] [47]

The PfEMP1 molecule is deposited at the RBC membrane at the knobs. [48] These knobs are easily identified as conspicuous bumps on the infected RBCs from the early trophozoite stage onward. [49] The malarial parasite cannot induce its virulence on RBCs without knobs. [50] As many as 10,000 knobs are distributed throughout the surface of a mature infected RBC, and each knob is 50-80 nm in diameter. [1] The export of pfEMP1 from Maurer's cleft to RBC membrane is mediated by binding of another protein produced by the parasite called knob-associated histidine-rich protein (KAHRP). KAHRP enhances the structural rigidity of infected RBC and adhesion of PfEMP1 on the knobs. [51] It is also directly responsible for forming knobs, as indicated by the fact that kahrp gene-deficient malarial parasites do not form knobs. [52] To form a knob, KAHRP aggregates several membrane skeletal proteins of the host RBC, such as spectrin, actin, ankyrin R, and spectrin–actin band 4.1 complex. [53] Upon arrival at the knob, PfEMP1 is attached to the spectrin network using the PHIST proteins. [54] [36]

Function

Model of binding of RBC and WBC infected by P. falciparum to endothelial cells. PfEMP cytoadhesion.png
Model of binding of RBC and WBC infected by P. falciparum to endothelial cells.

The primary function of PfEMP1 is to bind and attach RBCs to the wall of the blood vessels. The most important binding properties of P. falciparum known to date are mediated by the head structure of PfEMP1, consisting of DBL domains and CIDRs. [55] DBL domains can bind to a variety of cell receptors including thrombospondin (TSP), complement receptor 1 (CR1), chondroitin sulfate A (CSA), [5] P-selectin, [56] endothelial protein C receptor (EPCR), [57] and heparan sulfate. [58] The DBL domain adjacent to the head structure binds to ICAM-1. [59] CIDRs mainly bind to a large variety of cluster determinant 36 (CD36). [21] [60] These bindings produce the pathogenic characteristics of the parasite, such as sequestration of infected cells in different tissues, [61] invasion of RBCs, [62] and clustering of infected cells by a process called rosetting. [63]

The RBC-binding site of PfEMP1. (A) The head structure (mauve = NTS region, grey = DBL1a1, orange = CIDR1g) with the docked blood group A (green-blue-black sticks) and heparin (yellow-black sticks) molecules. (B) Detail of the RBC-binding site with bound molecules (yellow = C, blue =N, red = O). RBC binding site of PfEMP1.png
The RBC-binding site of PfEMP1. (A) The head structure (mauve = NTS region, grey = DBL1α1, orange = CIDR1γ) with the docked blood group A (green-blue-black sticks) and heparin (yellow-black sticks) molecules. (B) Detail of the RBC-binding site with bound molecules (yellow = C, blue =N, red = O).

CIDR1 protein in the semi-conserved head structure is the principal and best understood adhesion site of PfEMP1. It binds with CD36 on endothelial cells. [65] [66] Only group B and C proteins are able to bind, and that too with only those having CIDRα2-6 sequence types. On the other hand, group A proteins have either CIDRα1 or CIDRβ/γ/δ, and they are responsible for the most severe condition of malaria. [45] Binding with ICAM-1 is achieved through the DBLβ domain adjacent to the head structure. However, many PfEMP1s having DBLβ domain do not bind to ICAM-1, [67] and it appears that only the DBLβ paired with C2 domain can to bind to ICAM-1. [61] The DBLα-CIDRγ tandem pair is the main factor for rosetting, [64] sticking together the infected RBC with the uninfected cells, and thereby clogging of the blood vessels. This activity is performed through binding with CR1. [63] [68]

The most dangerous malarial infection is in the brain and is called cerebral malaria. In cerebral malaria, the PfEMP1 proteins involved are DC8 and DC13. They are named after the number of domain cassettes they contain, and are capable of binding not only endothelial cells of the brain, but also in different organs including brain, lung, heart, and bone marrow. [69] Initially, it was assumed that PfEMP1 binds to ICAM-1 in the brain, but DC8 and DC13 were found incompatible with ICAM-1. Instead DC8 and DC13 specifically bind to EPCR using CIDRα sub-types such as CIDRα1.1, CIDRα1.4, CIDRα1.5 and CIDRα1.7. [57] However, it was later shown that DC13 can bind to both ICAM-1 and EPCR. [70] EPCR is thus a potential vaccine and drug target in cerebral malaria. [71]

VAR2CSA is unique in that it is mostly produced by the placenta during pregnancy (the condition called pregnancy-associated malaria, PAM, or placental malaria). The majority of PAM is therefore due to VAR2SCA. [27] Unlike other PfEMP1, VAR2CSA binds to chondroitin sulfate A present on the vascular endothelium of the placenta. Although its individual domains can bind to CSA, its entire structure is used for complete binding. [72] The major complication in PAM is low-birth-weight babies. However, women who survived the first infection generally develop an effective immune response. In P. falciparum-prevalent regions in Africa, pregnant women are found to contain high levels of antibody (immunoglobulin G, or IgG) against VAR2CSA, which protect them the placenta-attacking malarial parasite. They are noted for giving birth to heavier babies. [33]

Clinical importance

In a normal human immune system, malarial parasite binding to RBCs stimulates the production of antibodies that attack the PfEMP1 molecules. Binding of antibody with PfEMP1 disables the binding properties of DBL domains, causing loss of cell adhesion, and the infected RBC is destroyed. In this scenario, malaria is avoided. [73] However, to evade the host's immune response, different P. falciparum switch on and off different var genes to produce functionally different (antigenically distinct) PfEMP1s. Each variant type of PfEMP1 has different binding property, and thus, is not always recognized by antibodies. [74]

By default, all the var genes in the malarial parasite are inactivated. Activation (gene expression) of var is initiated upon infection of the organs. Further, in each organ only specific var genes are activated. The severity of the infection is determined by the type of organ in which infection occurs, hence, the type of var gene activated. For examples, in the most severe cases of malaria, such as cerebral malaria, only the var genes for the PfEMP1 proteins DC8 and DC13 are switched on. [75] [76] Upon the synthesis of DC8 and DC13, their CIDRα1 domains bind to EPCR, which brings about the onset of severe malaria. [77] The abundance of the gene products (transcripts) of these PfEMP1 proteins (specifically the CIDRα1 subtype transcripts) directly relates to the severity of the disease. This further indicates that preventing the interaction between CIDRα1 and EPCR would be good target for a potential vaccine. [78] [79] In pregnancy-associated malaria, another severe type of falciparum malaria, the gene for VAR2CSA (named var2csa) is activated in the placenta. Binding of VAR2CSA to CSA is the primary cause of premature delivery, death of the foetus and severe anaemia in the mother. [72] This indicates that drugs targeting VAR2CSA will be able to prevent the effects of malaria, and for this reason VAR2CSA is the leading candidate for development of a PAM vaccine. [80]

Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

Glycophorin C plays a functionally important role in maintaining erythrocyte shape and regulating membrane material properties, possibly through its interaction with protein 4.1. Moreover, it has previously been shown that membranes deficient in protein 4.1 exhibit decreased content of glycophorin C. It is also an integral membrane protein of the erythrocyte and acts as the receptor for the Plasmodium falciparum protein PfEBP-2.

<span class="mw-page-title-main">Complement receptor 1</span> Protein found in humans

Complement receptor type 1 (CR1) also known as C3b/C4b receptor or CD35 is a protein that in humans is encoded by the CR1 gene.

<span class="mw-page-title-main">CD36</span> Mammalian protein found in Homo sapiens

CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<span class="mw-page-title-main">Merozoite surface protein</span>

Merozoitesurface proteins are both integral and peripheral membrane proteins found on the surface of a merozoite, an early life cycle stage of a protozoan. Merozoite surface proteins, or MSPs, are important in understanding malaria, a disease caused by protozoans of the genus Plasmodium. During the asexual blood stage of its life cycle, the malaria parasite enters red blood cells to replicate itself, causing the classic symptoms of malaria. These surface protein complexes are involved in many interactions of the parasite with red blood cells and are therefore an important topic of study for scientists aiming to combat malaria.

<span class="mw-page-title-main">Microneme</span>

Micronemes are secretory organelles, possessed by parasitic apicomplexans. Micronemes are located on the apical third of the protozoan body. They are surrounded by a typical unit membrane. On electron microscopy they have an electron-dense matrix due to the high protein content. They are specialized secretory organelles important for host-cell invasion and gliding motility.

Hemoglobin C is an abnormal hemoglobin in which glutamic acid residue at the 6th position of the β-globin chain is replaced with a lysine residue due to a point mutation in the HBB gene. People with one copy of the gene for hemoglobin C do not experience symptoms, but can pass the abnormal gene on to their children. Those with two copies of the gene are said to have hemoglobin C disease and can experience mild anemia. It is possible for a person to have both the gene for hemoglobin S and the gene for hemoglobin C; this state is called hemoglobin SC disease, and is generally more severe than hemoglobin C disease, but milder than sickle cell anemia.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

<span class="mw-page-title-main">Malaria antigen detection tests</span>

Malaria antigen detection tests are a group of commercially available rapid diagnostic tests of the rapid antigen test type that allow quick diagnosis of malaria by people who are not otherwise skilled in traditional laboratory techniques for diagnosing malaria or in situations where such equipment is not available. There are currently over 20 such tests commercially available. The first malaria antigen suitable as target for such a test was a soluble glycolytic enzyme Glutamate dehydrogenase. None of the rapid tests are currently as sensitive as a thick blood film, nor as cheap. A major drawback in the use of all current dipstick methods is that the result is essentially qualitative. In many endemic areas of tropical Africa, however, the quantitative assessment of parasitaemia is important, as a large percentage of the population will test positive in any qualitative assay.

Malaria vaccines are vaccines that prevent malaria, a mosquito-borne infectious disease which annually affects an estimated 247 million people worldwide and causes 619,000 deaths. The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix. As of April 2023, the vaccine has been given to 1.5 million children living in areas with moderate-to-high malaria transmission. It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years. The vaccine reduces hospital admissions from severe malaria by around 30%.

Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

Russell J. Howard is an Australian-born executive, entrepreneur and scientist. He was a pioneer in the fields of molecular parasitology, especially malaria, and in leading the commercialisation of one of the most important methods used widely today in molecular biology today called “DNA shuffling" or "Molecular breeding", a form of "Directed evolution".

Circumsporozoite protein (CSP) is a secreted protein of the sporozoite stage of the malaria parasite and is the antigenic target of RTS,S and other malaria vaccines. The amino-acid sequence of CSP consists of an immunodominant central repeat region flanked by conserved motifs at the N- and C- termini that are implicated in protein processing as the parasite travels from the mosquito to the mammalian vector. The amino acid sequence of CSP was determined in 1984.

KAHRP is a protein expressed by Plasmodium falciparum infecting erythrocytes. KAHRP is a major component of knobs, feature found on Plasmodium falciparum infected erythrocytes.

Maurer's clefts are membranous structures seen in the red blood cell during infection with Plasmodium falciparum. The function and contents of Maurer's clefts are not completely known; however, they appear to play a role in trafficking of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and other adhesins to the red blood cell surface.

<i>Plasmodium</i> helical interspersed subtelomeric protein

The Plasmodium helical interspersed subtelomeric proteins (PHIST) or ring-infected erythrocyte surface antigens (RESA) are a family of protein domains found in the malaria-causing Plasmodium species. It was initially identified as a short four-helical conserved region in the single-domain export proteins, but the identification of this part associated with a DnaJ domain in P. falciparum RESA has led to its reclassification as the RESA N-terminal domain. This domain has been classified into three subfamilies, PHISTa, PHISTb, and PHISTc.

Reticulocyte binding protein homologs (RHs) are a superfamily of proteins found in Plasmodium responsible for cell invasion. Together with the family of erythrocyte binding-like proteins (EBLs) they make up the two families of invasion proteins universal to Plasmodium. The two families function cooperatively.

References

Open Access logo PLoS transparent.svg This article was adapted from the following source under a CC BY 4.0 license (2017) (reviewer reports): Kholhring Lalchhandama (2017). "Plasmodium falciparum erythrocyte membrane protein 1" (PDF). WikiJournal of Medicine. 4 (1). doi: 10.15347/WJM/2017.004 . ISSN   2002-4436. Wikidata   Q43997683.

  1. 1 2 Quadt KA, Barfod L, Andersen D, Bruun J, Gyan B, Hassenkam T, Ofori MF, Hviid L (2012). "The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates". PLOS ONE. 7 (9): e45658. Bibcode:2012PLoSO...745658Q. doi: 10.1371/journal.pone.0045658 . PMC   3447797 . PMID   23029166.
  2. 1 2 "Malaria Fact sheet". WHO Media Centre. April 2016. Retrieved 5 November 2016.
  3. Cox FE (February 2010). "History of the discovery of the malaria parasites and their vectors". Parasites & Vectors. 3 (1): 5. doi: 10.1186/1756-3305-3-5 . PMC   2825508 . PMID   20205846.
  4. Antinori S, Galimberti L, Milazzo L, Corbellino M (2012). "Biology of human malaria plasmodia including Plasmodium knowlesi". Mediterranean Journal of Hematology and Infectious Diseases. 4 (1): e2012013. doi:10.4084/MJHID.2012.013. PMC   3340990 . PMID   22550559.
  5. 1 2 Rowe JA, Claessens A, Corrigan RA, Arman M (May 2009). "Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications". Expert Reviews in Molecular Medicine. 11: e16. doi:10.1017/S1462399409001082. PMC   2878476 . PMID   19467172.
  6. Sharma YD (1991). "Knobs, knob proteins and cytoadherence in falciparum malaria". The International Journal of Biochemistry. 23 (9): 775–89. doi:10.1016/0020-711X(91)90061-Q. PMID   1773882.
  7. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD (August 1983). "Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes". Proceedings of the National Academy of Sciences of the United States of America. 80 (16): 5075–9. Bibcode:1983PNAS...80.5075D. doi: 10.1073/pnas.80.16.5075 . PMC   384191 . PMID   6348780.
  8. Berendt AR, Ferguson DJ, Newbold CI (August 1990). "Sequestration in Plasmodium falciparum malaria: sticky cells and sticky problems". Parasitology Today. 6 (8): 247–54. doi:10.1016/0169-4758(90)90184-6. PMID   15463355.
  9. 1 2 3 Bull PC, Abdi AI (February 2016). "The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: prospects for a vaccine". Parasitology. 143 (2): 171–86. doi:10.1017/S0031182015001274. PMC   4825093 . PMID   26741401.
  10. 1 2 Sherman, Irwin (2008). Advances in Parasitology: Reflections on a Century of Malaria Biochemistry. London (UK): Academic Press. pp. 188–189. ISBN   978-0-08-092183-9.
  11. Pasloske BL, Howard RJ (1994). "Malaria, the red cell, and the endothelium". Annual Review of Medicine. 45 (1): 283–95. doi:10.1146/annurev.med.45.1.283. PMID   8198384.
  12. Leech JH, Barnwell JW, Miller LH, Howard RJ (June 1984). "Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes". The Journal of Experimental Medicine. 159 (6): 1567–75. doi:10.1084/jem.159.6.1567. PMC   2187322 . PMID   6374009.
  13. Aley SB, Sherwood JA, Howard RJ (November 1984). "Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes". The Journal of Experimental Medicine. 160 (5): 1585–90. doi:10.1084/jem.160.5.1585. PMC   2187501 . PMID   6208311.
  14. Aley SB, Sherwood JA, Marsh K, Eidelman O, Howard RJ (June 1986). "Identification of isolate-specific proteins on sorbitol-enriched Plasmodium falciparum infected erythrocytes from Gambian patients". Parasitology. 92 ( Pt 3) (3): 511–25. doi:10.1017/S0031182000065410. PMID   3526259. S2CID   12585437.
  15. Howard RJ, Lyon JA, Uni S, Saul AJ, Aley SB, Klotz F, Panton LJ, Sherwood JA, Marsh K, Aikawa M (May 1987). "Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane". The Journal of Cell Biology. 104 (5): 1269–80. doi:10.1083/jcb.104.5.1269. PMC   2114467 . PMID   2437128.
  16. Howard RJ, Barnwell JW, Rock EP, Neequaye J, Ofori-Adjei D, Maloy WL, Lyon JA, Saul A (January 1988). "Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes". Molecular and Biochemical Parasitology. 27 (2–3): 207–23. doi:10.1016/0166-6851(88)90040-0. PMID   3278227.
  17. Sherman IW, Winograd E (October 1990). "Antigens on the Plasmodium falciparum infected erythrocyte surface are not parasite derived". Parasitology Today. 6 (10): 317–20. doi:10.1016/0169-4758(90)90174-3. PMID   15463255.
  18. Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ (July 1995). "Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes". Cell. 82 (1): 77–87. doi: 10.1016/0092-8674(95)90054-3 . PMID   7541722. S2CID   700863.
  19. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH (July 1995). "Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes". Cell. 82 (1): 101–10. doi:10.1016/0092-8674(95)90056-X. PMC   3730239 . PMID   7606775.
  20. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (July 1995). "The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes". Cell. 82 (1): 89–100. doi: 10.1016/0092-8674(95)90055-1 . PMID   7606788. S2CID   18399506.
  21. 1 2 Pasternak ND, Dzikowski R (July 2009). "PfEMP1: an antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum". The International Journal of Biochemistry & Cell Biology. 41 (7): 1463–6. doi:10.1016/j.biocel.2008.12.012. PMID   19150410.
  22. Flick K, Chen Q (March 2004). "var genes, PfEMP1 and the human host". Molecular and Biochemical Parasitology. 134 (1): 3–9. doi:10.1016/j.molbiopara.2003.09.010. PMID   14747137.
  23. Chitnis CE, Miller LH (August 1994). "Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion". The Journal of Experimental Medicine. 180 (2): 497–506. doi:10.1084/jem.180.2.497. PMC   2191600 . PMID   8046329.
  24. Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH (October 2000). "Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family". Molecular and Biochemical Parasitology. 110 (2): 293–310. doi:10.1016/S0166-6851(00)00279-6. PMID   11071284.
  25. Dahlbäck M, Jørgensen LM, Nielsen MA, Clausen TM, Ditlev SB, Resende M, Pinto VV, Arnot DE, Theander TG, Salanti A (May 2011). "The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains". The Journal of Biological Chemistry. 286 (18): 15908–17. doi: 10.1074/jbc.M110.191510 . PMC   3091200 . PMID   21398524.
  26. 1 2 Melcher M, Muhle RA, Henrich PP, Kraemer SM, Avril M, Vigan-Womas I, Mercereau-Puijalon O, Smith JD, Fidock DA (October 2010). "Identification of a role for the PfEMP1 semi-conserved head structure in protein trafficking to the surface of Plasmodium falciparum infected red blood cells". Cellular Microbiology. 12 (10): 1446–62. doi:10.1111/j.1462-5822.2010.01481.x. PMC   2939972 . PMID   20438573.
  27. 1 2 Hviid, Lars; Jensen, Anja T.R. (2015). "PfEMP1 – A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis". In Rollinson, D.; Stothard, J.R. (eds.). PfEMP1 – A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. Advances in Parasitology. Vol. 88. Elsevier. pp. 51–84. doi:10.1016/bs.apar.2015.02.004. ISBN   978-0-12-802268-9. PMID   25911365.
  28. 1 2 Mayer C, Slater L, Erat MC, Konrat R, Vakonakis I (March 2012). "Structural analysis of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) intracellular domain reveals a conserved interaction epitope". The Journal of Biological Chemistry. 287 (10): 7182–9. doi: 10.1074/jbc.M111.330779 . PMC   3293552 . PMID   22249178.
  29. Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, Flamoe E, Su XZ, Awadalla P, Smith JD (August 2006). "Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria". Molecular and Biochemical Parasitology. 148 (2): 169–80. doi:10.1016/j.molbiopara.2006.03.012. PMID   16697476.
  30. Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS, Jespersen JS, Wang CW, Berger SS, Baraka V, Marquard AM, Seguin-Orlando A, Willerslev E, Gilbert MT, Lusingu J, Theander TG (June 2012). "Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): E1791-800. doi: 10.1073/pnas.1120455109 . PMC   3387094 . PMID   22619319.
  31. Zhang Y, Jiang N, Chang Z, Wang H, Lu H, Wahlgren M, Chen Q (2014). "The var3 genes of Plasmodium falciparum 3D7 strain are differentially expressed in infected erythrocytes". Parasite. 21: 19. doi:10.1051/parasite/2014019. PMC   3996964 . PMID   24759654.
  32. Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, Theander TG, Hviid L, Higgins MK, Craig A, Brown A, Jensen AT (January 2013). "A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies". Journal of Immunology. 190 (1): 240–9. doi:10.4049/jimmunol.1202578. PMC   3539686 . PMID   23209327.
  33. 1 2 Salanti A, Dahlbäck M, Turner L, Nielsen MA, Barfod L, Magistrado P, Jensen AT, Lavstsen T, Ofori MF, Marsh K, Hviid L, Theander TG (November 2004). "Evidence for the involvement of VAR2CSA in pregnancy-associated malaria". The Journal of Experimental Medicine. 200 (9): 1197–203. doi:10.1084/jem.20041579. PMC   2211857 . PMID   15520249.
  34. Hviid L, Salanti A (2007). "VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria". Parasitology. 134 (Pt 13): 1871–6. doi:10.1017/S0031182007000121. PMID   17958922. S2CID   7706073.
  35. Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG (July 2003). "Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria". Molecular Microbiology. 49 (1): 179–91. doi: 10.1046/j.1365-2958.2003.03570.x . PMID   12823820. S2CID   38384882.
  36. 1 2 3 Helms G, Dasanna AK, Schwarz US, Lanzer M (July 2016). "Modeling cytoadhesion of Plasmodium falciparum-infected erythrocytes and leukocytes-common principles and distinctive features". FEBS Letters. 590 (13): 1955–71. doi:10.1002/1873-3468.12142. PMC   5071704 . PMID   26992823.
  37. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (October 2002). "Genome sequence of the human malaria parasite Plasmodium falciparum". Nature. 419 (6906): 498–511. Bibcode:2002Natur.419..498G. doi:10.1038/nature01097. PMC   3836256 . PMID   12368864.
  38. Chen Q, Fernandez V, Sundström A, Schlichtherle M, Datta S, Hagblom P, Wahlgren M (July 1998). "Developmental selection of var gene expression in Plasmodium falciparum". Nature. 394 (6691): 392–5. Bibcode:1998Natur.394..392C. doi:10.1038/28660. PMID   9690477. S2CID   4408193.
  39. Scherf A, Lopez-Rubio JJ, Riviere L (2008). "Antigenic variation in Plasmodium falciparum". Annual Review of Microbiology. 62 (1): 445–70. doi:10.1146/annurev.micro.61.080706.093134. PMID   18785843.
  40. Kyes SA, Kraemer SM, Smith JD (September 2007). "Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family". Eukaryotic Cell. 6 (9): 1511–20. doi:10.1128/EC.00173-07. PMC   2043368 . PMID   17644655.
  41. Kyes SA, Christodoulou Z, Raza A, Horrocks P, Pinches R, Rowe JA, Newbold CI (June 2003). "A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern". Molecular Microbiology. 48 (5): 1339–48. doi:10.1046/j.1365-2958.2003.03505.x. PMC   2869446 . PMID   12787360.
  42. Kyriacou HM, Stone GN, Challis RJ, Raza A, Lyke KE, Thera MA, Koné AK, Doumbo OK, Plowe CV, Rowe JA (December 2006). "Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia". Molecular and Biochemical Parasitology. 150 (2): 211–8. doi:10.1016/j.molbiopara.2006.08.005. PMC   2176080 . PMID   16996149.
  43. Kirchner S, Power BJ, Waters AP (September 2016). "Recent advances in malaria genomics and epigenomics". Genome Medicine. 8 (1): 92. doi: 10.1186/s13073-016-0343-7 . PMC   5015228 . PMID   27605022.
  44. Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T (September 2010). "Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer". PLOS Computational Biology. 6 (9): e1000933. Bibcode:2010PLSCB...6E0933R. doi: 10.1371/journal.pcbi.1000933 . PMC   2940729 . PMID   20862303.
  45. 1 2 Smith JD (July 2014). "The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research". Molecular and Biochemical Parasitology. 195 (2): 82–7. doi:10.1016/j.molbiopara.2014.07.006. PMC   4159067 . PMID   25064606.
  46. Mundwiler-Pachlatko E, Beck HP (December 2013). "Maurer's clefts, the enigma of Plasmodium falciparum". Proceedings of the National Academy of Sciences of the United States of America. 110 (50): 19987–94. Bibcode:2013PNAS..11019987M. doi: 10.1073/pnas.1309247110 . PMC   3864307 . PMID   24284172.
  47. Warncke JD, Vakonakis I, Beck HP (December 2016). "Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling". Microbiology and Molecular Biology Reviews. 80 (4): 905–27. doi:10.1128/MMBR.00014-16. PMC   5116875 . PMID   27582258.
  48. Cooke B, Coppel R, Wahlgren M (October 2000). "Falciparum malaria: sticking up, standing out and out-standing". Parasitology Today. 16 (10): 416–20. doi:10.1016/S0169-4758(00)01753-1. PMID   11006472.
  49. Nagao E, Kaneko O, Dvorak JA (May 2000). "Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy". Journal of Structural Biology. 130 (1): 34–44. doi:10.1006/jsbi.2000.4236. PMID   10806089.
  50. Maier AG, Rug M, O'Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, Newbold C, Beeson JG, Craig A, Crabb BS, Cowman AF (July 2008). "Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes". Cell. 134 (1): 48–61. doi:10.1016/j.cell.2008.04.051. PMC   2568870 . PMID   18614010.
  51. Watermeyer JM, Hale VL, Hackett F, Clare DK, Cutts EE, Vakonakis I, Fleck RA, Blackman MJ, Saibil HR (January 2016). "A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes". Blood. 127 (3): 343–51. doi:10.1182/blood-2015-10-674002. PMC   4797390 . PMID   26637786.
  52. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME, Brown GV, Coppel RL, Cowman AF (April 1997). "Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress". Cell. 89 (2): 287–96. doi: 10.1016/S0092-8674(00)80207-X . PMID   9108483. S2CID   14042200.
  53. Rug M, Prescott SW, Fernandez KM, Cooke BM, Cowman AF (July 2006). "The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes". Blood. 108 (1): 370–8. doi:10.1182/blood-2005-11-4624. PMC   1895844 . PMID   16507777.
  54. Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S, Masik MF, Erat MC, Beck HP, Vakonakis I (October 2014). "A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface". FASEB Journal. 28 (10): 4420–33. doi: 10.1096/fj.14-256057 . PMC   4202109 . PMID   24983468.
  55. Crabb BS, Cowman AF (October 2002). "Plasmodium falciparum virulence determinants unveiled". Genome Biology. 3 (11): REVIEWS1031. doi: 10.1186/gb-2002-3-11-reviews1031 . PMC   244921 . PMID   12441004.
  56. Senczuk AM, Reeder JC, Kosmala MM, Ho M (November 2001). "Plasmodium falciparum erythrocyte membrane protein 1 functions as a ligand for P-selectin". Blood. 98 (10): 3132–5. doi:10.1182/blood.V98.10.3132. PMID   11698301. S2CID   8215000.
  57. 1 2 Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG (June 2013). "Severe malaria is associated with parasite binding to endothelial protein C receptor". Nature. 498 (7455): 502–5. Bibcode:2013Natur.498..502T. doi:10.1038/nature12216. PMC   3870021 . PMID   23739325.
  58. Angeletti D, Sandalova T, Wahlgren M, Achour A (2015). "Binding of subdomains 1/2 of PfEMP1-DBL1α to heparan sulfate or heparin mediates Plasmodium falciparum rosetting". PLOS ONE. 10 (3): e0118898. Bibcode:2015PLoSO..1018898A. doi: 10.1371/journal.pone.0118898 . PMC   4351205 . PMID   25742651.
  59. Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagan T, Fagen T, Pinches R, Baruch DI, Newbold CI, Miller LH (February 2000). "Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria". Proceedings of the National Academy of Sciences of the United States of America. 97 (4): 1766–71. Bibcode:2000PNAS...97.1766S. doi: 10.1073/pnas.040545897 . PMC   26510 . PMID   10677532.
  60. Kraemer SM, Smith JD (August 2006). "A family affair: var genes, PfEMP1 binding, and malaria disease". Current Opinion in Microbiology. 9 (4): 374–80. doi:10.1016/j.mib.2006.06.006. PMID   16814594.
  61. 1 2 Howell DP, Levin EA, Springer AL, Kraemer SM, Phippard DJ, Schief WR, Smith JD (January 2008). "Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors". Molecular Microbiology. 67 (1): 78–87. doi: 10.1111/j.1365-2958.2007.06019.x . PMID   18047571.
  62. Cowman AF, Crabb BS (February 2006). "Invasion of red blood cells by malaria parasites". Cell. 124 (4): 755–66. doi: 10.1016/j.cell.2006.02.006 . PMID   16497586. S2CID   14972823.
  63. 1 2 Rowe JA, Moulds JM, Newbold CI, Miller LH (July 1997). "P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1". Nature. 388 (6639): 292–5. Bibcode:1997Natur.388..292R. doi: 10.1038/40888 . PMID   9230440. S2CID   4360918.
  64. 1 2 Vigan-Womas I, Guillotte M, Juillerat A, Hessel A, Raynal B, England P, Cohen JH, Bertrand O, Peyrard T, Bentley GA, Lewit-Bentley A, Mercereau-Puijalon O (2012). "Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting". PLOS Pathogens. 8 (7): e1002781. doi: 10.1371/journal.ppat.1002781 . PMC   3395597 . PMID   22807674.
  65. Baruch DI, Ma XC, Singh HB, Bi X, Pasloske BL, Howard RJ (November 1997). "Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence". Blood. 90 (9): 3766–75. doi: 10.1182/blood.V90.9.3766 . PMID   9345064.
  66. Hsieh FL, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK (September 2016). "The structural basis for CD36 binding by the malaria parasite". Nature Communications. 7: 12837. Bibcode:2016NatCo...712837H. doi:10.1038/ncomms12837. PMC   5052687 . PMID   27667267.
  67. Howell DP, Samudrala R, Smith JD (July 2006). "Disguising itself--insights into Plasmodium falciparum binding and immune evasion from the DBL crystal structure". Molecular and Biochemical Parasitology. 148 (1): 1–9. doi:10.1016/j.molbiopara.2006.03.004. PMID   16621067.
  68. Stoute JA (October 2011). "Complement receptor 1 and malaria". Cellular Microbiology. 13 (10): 1441–50. doi: 10.1111/j.1462-5822.2011.01648.x . PMID   21790941.
  69. Avril M, Brazier AJ, Melcher M, Sampath S, Smith JD (2013). "DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells". PLOS Pathogens. 9 (6): e1003430. doi: 10.1371/journal.ppat.1003430 . PMC   3694856 . PMID   23825944.
  70. Avril M, Bernabeu M, Benjamin M, Brazier AJ, Smith JD (July 2016). "Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells". mBio. 7 (4): e00615–16. doi:10.1128/mBio.00615-16. PMC   4958245 . PMID   27406562.
  71. Lau CK, Turner L, Jespersen JS, Lowe ED, Petersen B, Wang CW, Petersen JE, Lusingu J, Theander TG, Lavstsen T, Higgins MK (January 2015). "Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria". Cell Host & Microbe. 17 (1): 118–29. doi:10.1016/j.chom.2014.11.007. PMC   4297295 . PMID   25482433.
  72. 1 2 Khunrae P, Dahlbäck M, Nielsen MA, Andersen G, Ditlev SB, Resende M, Pinto VV, Theander TG, Higgins MK, Salanti A (April 2010). "Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies". Journal of Molecular Biology. 397 (3): 826–34. doi:10.1016/j.jmb.2010.01.040. PMC   3715698 . PMID   20109466.
  73. Deitsch KW, Chitnis CE (June 2012). "Molecular basis of severe malaria". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): 10130–1. Bibcode:2012PNAS..10910130D. doi: 10.1073/pnas.1207174109 . PMC   3387049 . PMID   22679282.
  74. Deshmukh, A. S.; Srivastava, S.; Dhar, S. K. (2013). "Plasmodium falciparum: Epigenetic Control of var Gene Regulation and Disease". In Kundu, T. K. (ed.). Epigenetics: Development and Disease. Subcellular Biochemistry. Vol. 61. Dordrecht: Springer. pp. 659–682. doi:10.1007/978-94-007-4525-4_28. ISBN   978-94-007-4524-7. PMID   23150271.
  75. Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH, Soma VL, Sullivan DJ, Bull PC, Stins MF, Smith JD (June 2012). "A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): E1782-90. doi: 10.1073/pnas.1120534109 . PMC   3387091 . PMID   22619321.
  76. Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, Bull PC, Mok S, Gupta AP, Wang CW, Turner L, Arman M, Raza A, Bozdech Z, Rowe JA (June 2012). "A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells". Proceedings of the National Academy of Sciences of the United States of America. 109 (26): E1772-81. doi: 10.1073/pnas.1120461109 . PMC   3387129 . PMID   22619330.
  77. Bernabeu M, Smith JD (April 2017). "EPCR and Malaria Severity: The Center of a Perfect Storm". Trends in Parasitology. 33 (4): 295–308. doi:10.1016/j.pt.2016.11.004. PMC   5376506 . PMID   27939609.
  78. Jespersen JS, Wang CW, Mkumbaye SI, Minja DT, Petersen B, Turner L, Petersen JE, Lusingu JP, Theander TG, Lavstsen T (August 2016). "Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains". EMBO Molecular Medicine. 8 (8): 839–50. doi:10.15252/emmm.201606188. PMC   4967939 . PMID   27354391.
  79. Mkumbaye SI, Wang CW, Lyimo E, Jespersen JS, Manjurano A, Mosha J, Kavishe RA, Mwakalinga SB, Minja DT, Lusingu JP, Theander TG, Lavstsen T (April 2017). "var Genes Encoding Endothelial Protein C Receptor-Binding P. falciparum Erythrocyte Membrane Protein 1". Infection and Immunity. 85 (4): IAI.00841–16. doi:10.1128/IAI.00841-16. PMC   5364309 . PMID   28138022.
  80. Fried M, Duffy PE (December 2015). "Designing a VAR2CSA-based vaccine to prevent placental malaria". Vaccine. 33 (52): 7483–8. doi:10.1016/j.vaccine.2015.10.011. PMC   5077158 . PMID   26469717.