CD36 (cluster of differentiation 36), also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, [5] thrombospondin, [6] erythrocytes parasitized with Plasmodium falciparum , [7] oxidized low density lipoprotein, [8] [9] native lipoproteins, [10] oxidized phospholipids, [11] and long-chain fatty acids. [12]
Work in genetically modified rodents suggest a role for CD36 in fatty acid metabolism, [13] [14] [15] heart disease, [16] taste, [17] [18] [19] and dietary fat processing in the intestine. [20] It may be involved in glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer's disease and various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. [21] [22] [23]
In humans, rats and mice, CD36 consists of 472 amino acids with a predicted molecular weight of approximately 53,000 Da. However, CD36 is extensively glycosylated and has an apparent molecular weight of 88,000 Da as determined by SDS polyacrylamide gel electrophoresis. [24]
Using Kyte–Doolittle analysis, [25] the amino acid sequence of CD36 predicts a hydrophobic region near each end of the protein large enough to span cellular membranes. Based on this notion and the observation that CD36 is found on the surface of cells, CD36 is thought to have a 'hairpin-like' structure with α-helices at the C- and N- termini projecting through the membrane and a larger extracellular loop (Fig. 1). This topology is supported by transfection experiments in cultured cells using deletion mutants of CD36. [26] [27]
Based on the crystal structure of the homologous SCARB2, a model of the extracellular domain of CD36 has been produced. [28] Like SCARB2, CD36 is proposed to contain an antiparallel β-barrel core with many short α-helices adorning it. The structure is predicted to contain a hydrophobic transport tunnel. Disulfide linkages between 4 of the 6 cysteine residues in the extracellular loop are required for efficient intracellular processing and transport of CD36 to the plasma membrane. [29] It is not clear what role these linkages play on the function of the mature CD36 protein on the cell surface.
Besides glycosylation, additional post-translational modifications have been reported for CD36. CD36 is modified with 4 palmitoyl chains, 2 on each of the two intracellular domains. [27] The function of these lipid modifications is currently unknown but they likely promote the association of CD36 with the membrane and possibly lipid rafts which appear to be important for some CD36 functions. [30] [31] CD36 could be also phosphorylated at Y62, T92, T323, [32] ubiquitinated at K56, K469, K472 and acetylated at K52, K56, K166, K231, K394, K398, K403. [33] [34] [35]
In the absence of ligand, membrane bound CD36 exists primarily in a monomeric state. However exposure to the thrombospondin ligand causes CD36 to dimerize. This dimerization has been proposed to play an important role in CD36 signal transduction. [36]
In humans, the gene is located on the long arm of chromosome 7 at band 11.2 (7q11.2 [37] ) and is encoded by 15 exons that extend over more than 32 kilobases. Both the 5' and the 3' untranslated regions contain introns: the 5' with two and the 3' one. Exons 1, 2 and first 89 nucleotides of exon 3 and as well as exon 15 are non-coding. Exon 3 contains encodes the N-terminal cytoplasmic and transmembrane domains. The C-terminal cytoplasmic and transmembrane regions is encoded by exon 14. The extracellular domain is encoded by the central 11 exons. Alternative splicing of the untranslated regions gives rise to at least two mRNA species.
The transcription initiation site of the CD36 gene has been mapped to 289 nucleotides upstream from the translational start codon and a TATA box and several putative cis regulatory regions lie further 5'. A binding site for PEBP2/CBF factors has been identified between -158 and -90 and disruption of this site reduces expression. The gene is the transcriptional control of the nuclear receptor PPAR/RXR heterodimer (Peroxisome proliferator-activated receptor – Retinoid X receptor) and gene expression can be up regulated using synthetic and natural ligands for PPAR and RXR, including the thiazolidinedione class of anti-diabetic drugs and the vitamin A metabolite 9-cis-retinoic acid respectively.
CD36 is found on platelets, erythrocytes, monocytes, differentiated adipocytes, skeletal muscle, mammary epithelial cells, spleen cells and some skin microdermal endothelial cells.
The protein itself belongs to the class B scavenger receptor family which includes receptors for selective cholesteryl ester uptake, scavenger receptor class B type I (SR-BI) and lysosomal integral membrane protein II (LIMP-II).
CD36 interacts with a number of ligands, including collagen types I and IV, thrombospondin, erythrocytes parasitized with Plasmodium falciparum , platelet-agglutinating protein p37, oxidized low density lipoprotein and long-chain fatty acids. [38]
On macrophages CD36 forms part of a non-opsonic receptor (the scavenger receptor CD36/alpha-v beta-3 complex) and is involved in phagocytosis. [39]
CD36 has also been implicated in hemostasis, thrombosis, malaria, inflammation, lipid metabolism and atherogenesis. [40]
On binding a ligand the protein and ligand are internalized. This internalization is independent of macropinocytosis and occurs by an actin dependent mechanism requiring the activation Src-family kinases, JNK and Rho-family GTPases. [41] Unlike macropinocytosis this process is not affected by inhibitors of phosphatidylinositol 3-kinase or Na+/H+ exchange.
CD36 ligands have also been shown to promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. [42]
Recently, CD36 was linked to store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2 [43]
CD36 function in long-chain fatty acid uptake and signaling can be irreversibly inhibited by sulfo-N-succinimidyl oleate (SSO), which binds lysine 164 within a hydrophobic pocket shared by several CD36 ligands, e.g. fatty acid and oxLDL. [34] Recent research concluded that CD36 is involved in the fat taste transduction (oleogustus).
Infections with the human malaria parasite Plasmodium falciparum are characterized by sequestration of erythrocytes infected with mature forms of the parasite and CD36 has been shown to be a major sequestration receptor on microvascular endothelial cells. Parasitised erythrocytes adhere to endothelium at the trophozoite/schizonts stage simultaneous with the appearance of the var gene product (erythrocyte membrane protein 1) on the erythrocyte surface. The appearance of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the erythrocyte surface is a temperature dependent phenomenon which is due to increased protein trafficking to the erythrocyte surface at the raised temperature. PfEMP1 can bind other endothelial receptors - thrombospondin (TSP) and intercellular adhesion molecule 1 (ICAM-1) – in addition to CD36 - and genes other than PfEMP1 also bind to CD36: cytoadherence linked protein (clag) and sequestrin. The PfEMP1 binding site on CD36 is known to be located on exon 5.
CD36 on the surface of the platelets has been shown to be involved in adherence but direct adherence to the endothelium by the infected erythrocytes also occurs. Autoaggregation of infected erythrocytes by platelets has been shown to correlate with severe malaria and cerebral malaria in particular and antiplatelet antibodies may offer some protection.
Several lines of evidence suggest that mutations in CD36 are protective against malaria: mutations in the promoters and within introns and in exon 5 reduce the risk of severe malaria. Gene diversity studies suggest there has been positive selection on this gene presumably due to malarial selection pressure. Dissenting reports are also known suggesting that CD36 is not the sole determinant of severe malaria. In addition a role for CD36 has been found in the clearance of gametocytes (stages I and II).
CD36 has been shown to have a role in the innate immune response to malaria in mouse models. [44] Compared with wild type mice CD36 (-/-) mice the cytokine induction response and parasite clearance were impaired. Earlier peak parasitemias, higher parasite densities and higher mortality were noted. It is thought that CD36 is involved in the Plasmodium falciparum glycophosphatidylinositol (PfGPI) induced MAPK activation and proinflammatory cytokine secretion. When macrophages were exposed to PfGPI the proteins ERK1/2, JNK, p38, and c-Jun became phosphorylated. All these proteins are involved as secondary messengers in the immune response. These responses were blunted in the CD36 (-/-) mice. Also in the CD36 (-/-) macrophages secreted significantly less TNF-alpha on exposure to PfGPI. Work is ongoing to determine how these exactly how these responses provide protection against malaria.
CD36 is also known as glycoprotein IV (gpIV) or glycoprotein IIIb (gpIIIb) in platelets and gives rise to the Naka antigen. The Naka null phenotype is found in 0.3% of Caucasians and appears to be asymptomatic. The null phenotype is more common in African (2.5%), Japanese, and other Asian populations (5-11%).
Mutations in the human CD36 gene were first identified in a patient who, despite multiple platelet transfusions, continued to exhibit low platelet levels. [45] [46] This condition is known as refractoriness to platelet transfusion. Subsequent studies have shown that CD36 found on the surface of platelets. This antigen is recognized by the monoclonal antibodies (MAbs) OKM5 and OKM8. It is bound by the Plasmodium falciparum protein sequestrin. [47]
Depending on the nature of the mutation in codon 90 CD36 may be absent either on both platelets and monocytes (type 1) or platelets alone (type 2). Type 2 has been divided into two subtypes - a and b. Deficiency restricted to the platelets alone is known as type 2a; if CD36 is also absent from the erythroblasts the phenotype is classified as type 2b. [48] The molecular basis is known for some cases: T1264G in both Kenyans and Gambians; C478T (50%), 539 deletion of AC and 1159 insertion of an A, 1438-1449 deletion and a combined 839-841 deletion GAG and insertion of AAAAC in Japanese.
In a study of 827 apparently healthy Japanese volunteers, type I and II deficiencies were found in 8 (1.0%) and 48 (5.8%) respectively. [49] In 1127 healthy French blood donors (almost all of whom were white Europeans) no CD36 deficiency was found. [50] In a second group only 1 of 301 white test subjects was found to be CD36 deficient. 16 of the 206 sub-Saharan black Africans and 1 of 148 black Caribbeans were found to be CD36 -ve. Three of 13 CD36 -ve persons examined had anti CD36 antibodies. In a group of 250 black American blood donors 6 (2.4%) were found to be Naka antigen negative. [51]
CD36 deficiency may be a cause of post transfusion purpura. [52]
Below normal levels of CD36 expression in the kidneys has been implicated as a genetic risk factor for hypertension (high blood pressure). [53]
An association with myocardial fatty acid uptake in humans has been noted. [54] The data suggest a link between hypertrophic cardiomyopathy and CD36 but this needs to be confirmed.
RNAi screening in a Drosophila model has revealed that a member of the CD36 family is required for phagocytosis of Mycobacterium tuberculosis into macrophage phagosomes. [55]
Avirulent strains of Toxoplasma gondii bind to CD36 but virulent parasites fail to engage CD36. In mice, CD36 is required for disease tolerance but not for the development of immunity or resistance. [56]
CD36's association with the ability to taste fats has made it a target for various studies regarding obesity and alteration of lipid tasting. CD36 mRNA expression was found to be reduced in taste bud cells (TBC) of obese sand rats (P. obesus) compared to lean controls, implicating an association between CD36 and obesity. [57] Although actual levels of CD36 protein were not different between the obese and control rat cells, Abdoul-Azize et al. hypothesize that the physical distribution of CD36 could differ in obese rat cells. [57] Changes in calcium mediation have been associated with CD36 and obesity as well. Taste bud cells (more specifically, cells from the circumvallate papillae) containing CD36 that were isolated from obese mice exhibited a significantly smaller increase in calcium after fatty acid stimulation when compared to control mice: [58] CD36 associated calcium regulation is impaired when mice are made to be obese (but not in normal weight mice), and this could be a mechanism contributing to behavior changes in the obese mice, such as decreased lipid taste sensitivity and decreased attraction to fats. [58]
There has been some investigation into human CD36 as well. A study examined oral detection of fat in obese subjects with genetic bases for high, medium, and low expression of the CD36 receptor. Those subjects with high CD36 expression were eight times more sensitive to certain fats (oleic acid and triolein) than the subjects with low CD36 expression. [18] Those subjects with an intermediate amount of CD36 expression were sensitive to fat at a level between the high and low groups. [18] This study demonstrates that there is a significant relationship between oral fat sensitivity and the amount of CD36 receptor expression, but further investigation into CD36 could be useful for learning more about lipid tasting in the context of obesity, as CD36 may be a target for therapies in the future.
Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. [59]
CD36 plays a role in the regulation of angiogenesis, which may be a therapeutic strategy for controlling the spread of cancer. [60] Some data from in vitro and animal studies suggested that fatty acid uptake through CD36 may promote cancer cell migration and proliferation in hepatocellular carcinoma, glioblastoma, and potentially other cancers; there was limited data from observational studies in people that low CD36 may correlate with a slightly better outcome in glioblastoma. [61]
CD36 family | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | CD36 | ||||||||
Pfam | PF01130 | ||||||||
InterPro | IPR002159 | ||||||||
|
Other human scavenger receptors related to CD36 are SCARB1 and SCARB2 proteins.
Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important regulatory hormone in lipolysis is insulin; lipolysis can only occur when insulin action falls to low levels, as occurs during fasting. Other hormones that affect lipolysis include leptin, glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.
Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.
Glycophorin C plays a functionally important role in maintaining erythrocyte shape and regulating membrane material properties, possibly through its interaction with protein 4.1. Moreover, it has previously been shown that membranes deficient in protein 4.1 exhibit decreased content of glycophorin C. It is also an integral membrane protein of the erythrocyte and acts as the receptor for the Plasmodium falciparum protein PfEBP-2.
Complement receptor type 1 (CR1) also known as C3b/C4b receptor or CD35 is a protein that in humans is encoded by the CR1 gene.
Scavenger receptors are a large and diverse superfamily of cell surface receptors. Its properties were first recorded in 1970 by Drs. Brown and Goldstein, with the defining property being the ability to bind and remove modified low density lipoproteins (LDL). Today scavenger receptors are known to be involved in a wide range of processes, such as: homeostasis, apoptosis, inflammatory diseases and pathogen clearance. Scavenger receptors are mainly found on myeloid cells and other cells that bind to numerous ligands, primarily endogenous and modified host-molecules together with pathogen-associated molecular patterns(PAMPs), and remove them. The Kupffer cells in the liver are particularly rich in scavenger receptors, includes SR-A I, SR-A II, and MARCO.
Scramblase is a protein responsible for the translocation of phospholipids between the two monolayers of a lipid bilayer of a cell membrane. In humans, phospholipid scramblases (PLSCRs) constitute a family of five homologous proteins that are named as hPLSCR1–hPLSCR5. Scramblases are members of the general family of transmembrane lipid transporters known as flippases. Scramblases are distinct from flippases and floppases. Scramblases, flippases, and floppases are three different types of enzymatic groups of phospholipid transportation enzymes. The inner-leaflet, facing the inside of the cell, contains negatively charged amino-phospholipids and phosphatidylethanolamine. The outer-leaflet, facing the outside environment, contains phosphatidylcholine and sphingomyelin. Scramblase is an enzyme, present in the cell membrane, that can transport (scramble) the negatively charged phospholipids from the inner-leaflet to the outer-leaflet, and vice versa.
The very-low-density-lipoprotein receptor (VLDLR) is a transmembrane lipoprotein receptor of the low-density-lipoprotein (LDL) receptor family. VLDLR shows considerable homology with the members of this lineage. Discovered in 1992 by T. Yamamoto, VLDLR is widely distributed throughout the tissues of the body, including the heart, skeletal muscle, adipose tissue, and the brain, but is absent from the liver. This receptor has an important role in cholesterol uptake, metabolism of apolipoprotein E-containing triacylglycerol-rich lipoproteins, and neuronal migration in the developing brain. In humans, VLDLR is encoded by the VLDLR gene. Mutations of this gene may lead to a variety of symptoms and diseases, which include type I lissencephaly, cerebellar hypoplasia, and atherosclerosis.
Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.
Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.
An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including Toxoplasma gondii, and Plasmodium falciparum and other Plasmodium spp., but not in others such as Cryptosporidium. It originated from algae through secondary endosymbiosis; there is debate as to whether this was a green or red alga. The apicoplast is surrounded by four membranes within the outermost part of the endomembrane system. The apicoplast hosts important metabolic pathways like fatty acid synthesis, isoprenoid precursor synthesis and parts of the heme biosynthetic pathway.
Basigin (BSG) also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147) is a protein that in humans is encoded by the BSG gene. This protein is a determinant for the Ok blood group system. There are three known antigens in the Ok system; the most common being Oka, OK2 and OK3. Basigin has been shown to be an essential receptor on red blood cells for the human malaria parasite, Plasmodium falciparum. The common isoform of basigin (basigin-2) has two immunoglobulin domains, and the extended form basigin-1 has three.
A taste receptor or tastant is a type of cellular receptor that facilitates the sensation of taste. When food or other substances enter the mouth, molecules interact with saliva and are bound to taste receptors in the oral cavity and other locations. Molecules which give a sensation of taste are considered "sapid".
The fatty-acid-binding proteins (FABPs) are a family of transport proteins for fatty acids and other lipophilic substances such as eicosanoids and retinoids. These proteins are thought to facilitate the transfer of fatty acids between extra- and intracellular membranes. Some family members are also believed to transport lipophilic molecules from outer cell membrane to certain intracellular receptors such as PPAR. The FABPs are intracellular carriers that “solubilize” the endocannabinoid anandamide (AEA), transporting AEA to the breakdown by FAAH, and compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids are also discovered to bind human FABPs that function as intracellular carriers, as THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. Levels of fatty-acid-binding protein have been shown to decline with ageing in the mouse brain, possibly contributing to age-associated decline in synaptic activity.
Blood lipids are lipids in the blood, either free or bound to other molecules. They are mostly transported in a phospholipid capsule, and the type of protein embedded in this outer shell determines the fate of the particle and its influence on metabolism. Examples of these lipids include cholesterol and triglycerides. The concentration of blood lipids depends on intake and excretion from the intestine, and uptake and secretion from cells. Hyperlipidemia is the presence of elevated or abnormal levels of lipids and/or lipoproteins in the blood, and is a major risk factor for cardiovascular disease.
Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.
Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.
CD36 antigen is a transmembrane, highly glycosylated, glycoprotein expressed by monocytes, macrophages, platelets, microvascular endothelial cells and adipose tissues. CD36 recognises oxidized low density lipoprotein, long chain fatty acids, anionic phospholipids, collagen types I, IV and V, thrombospondin and Plasmodium falciparum infected erythrocytes.
In molecular biology, Duffy binding proteins are found in Plasmodium. Plasmodium vivax and Plasmodium knowlesi merozoites invade Homo sapiens erythrocytes that express Duffy blood group surface determinants. The Duffy receptor family is localised in micronemes, an organelle found in all organisms of the phylum Apicomplexa.
Russell J. Howard is an Australian-born executive, entrepreneur and scientist. He was a pioneer in the fields of molecular parasitology, especially malaria, and in leading the commercialisation of one of the most important methods used widely today in molecular biology today called “DNA shuffling" or "Molecular breeding", a form of "Directed evolution".
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.