CLEC10A

Last updated
CLEC10A
Identifiers
Aliases CLEC10A , CD301, CLECSF13, CLECSF14, HML, HML2, MGL, C-type lectin domain family 10 member A, C-type lectin domain containing 10A
External IDs OMIM: 605999 MGI: 96975 HomoloGene: 7836 GeneCards: CLEC10A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006344
NM_182906
NM_001330070

NM_001204252
NM_010796

RefSeq (protein)

NP_001316999
NP_006335
NP_878910

NP_001191181
NP_034926

Location (UCSC) Chr 17: 7.07 – 7.08 Mb Chr 11: 70.05 – 70.06 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

C-type lectin domain family 10 member A (CLEC10A) also designated as CD301 is a protein that in humans is encoded by the CLEC10A gene. [5] CLEC10A is part of the C-type lectin superfamily and binds to N-Acetylgalactosamine (GalNAc). It is mainly expressed on myeloid cells and also on oocytes and very early stages of embryogenesis. CLEC10A is used as a marker of the CD1c+ dendritic cell subgroup, also called cDC2. [6] The actions of CLEC10A are diverse, depending on the ligand and environment. [7]

Contents

Function

Generally, C-type lectins bind carbohydrate moieties usually in the presence of Ca2+ and have diverse functions, such as cell adhesion, cell-cell signalling, glycoprotein turnover, and roles in inflammation and immune response. [8]

CLEC10A is a type II transmembrane protein (passing one time through the membrane and oriented with the N terminus inward) that induces endocytosis after ligand binding. To release the ligand in the endosome, participating Ca2+ ions have to be unbound first. This leads to a significant increase in cytoplasmic Ca2+ concentration. [7]

CLEC10A binds most strongly to N-Acetylgalactosamine (GalNAc), preferring α-GalNAc over β-GalNAc, unmodified galactose is bound very weakly. [7] CLEC10A is the only C-type lectin within the human immune system that exclusively recognizes terminal GalNAc. [9] This includes the Tn antigen (GalNAc O-bound to serine or threonine) which is prominently expressed on carcinomas, where it can also be sialylated. These tumor-associated antigens (Neu5Acα2,6-Tn, and NeuGcα2,6-Tn) are also bound. [10]

CLEC10A has also been shown to bind GalNAc in the teichoic acid of the Staphylococcus aureus cell wall and the surface of parasites. [11] [12]

CLEC10A is expressed by dendritic cells that differentiate from monocytes recruited to inflammatory environments. [13]

CD45 contains a Tn antigen in exon B. CD45 has 3 important exons (4,5,6), that are designated A,B,C. Isoforms of CD45 are labeled depending on the presence of these exons. CLEC10A can for example bind CD45RB or CD45R, which is shorthand for CD45RABC. Binding causes attenuation of T cell activity, apoptosis, and immunosuppression. However, active T cells express shorter isoforms of CD45 (CD45RO, CD45RA) that lack exon B. [7]

CLEC10A signalling induces IL-10 production in dendritic cells, in part through increasing intracellular Ca2+ concentration. IL-10 is the main regulatory and anti-inflammatory cytokine produced in humans. In contrast, low concentrations of intracellular Ca2+ result in production of IL-12, a pro-inflammatory cytokine that also leads to Th1 polarisation. [7]

In cancer research, CLEC10A expression was found to both improve [14] [15] [16] and worsen [17] survival.

In animal models, deficiency of the orthologue to CLEC10A, Mgl1 is associated with worse outcomes in infection and excessive inflammation. [18]

Related Research Articles

<span class="mw-page-title-main">T helper cell</span> Type of immune cell

The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils. CD4+ cells are mature Th cells that express the surface protein CD4. Genetic variation in regulatory elements expressed by CD4+ cells determines susceptibility to a broad class of autoimmune diseases.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

<span class="mw-page-title-main">DC-SIGN</span> Protein-coding gene in the species Homo sapiens

DC-SIGN also known as CD209 is a protein which in humans is encoded by the CD209 gene.

<span class="mw-page-title-main">CD23</span> Low-affinity" receptor for IgE

CD23, also known as Fc epsilon RII, or FcεRII, is the "low-affinity" receptor for IgE, an antibody isotype involved in allergy and resistance to parasites, and is important in regulation of IgE levels. Unlike many of the antibody receptors, CD23 is a C-type lectin. It is found on mature B cells, activated macrophages, eosinophils, follicular dendritic cells, and platelets.

<span class="mw-page-title-main">CD14</span> Mammalian protein found in Homo sapiens

CD14 is a human protein made mostly by macrophages as part of the innate immune system. It helps to detect bacteria in the body by binding lipopolysaccharide (LPS), a pathogen-associated molecular pattern (PAMP).

The asialoglycoprotein receptors (ASGPR) are lectins which bind asialoglycoprotein and glycoproteins from which a sialic acid has been removed to expose galactose residues. The receptors, which are integral membrane proteins and are located on mammalian hepatocytes, remove target glycoproteins from circulation. The asialoglycoprotein receptor has been demonstrated to have high expression on the surface of hepatocytes and several human carcinoma cell lines It is also weakly expressed by glandular cells of the gallbladder and the stomach. Lactobionic acid has been used as a targeting moiety for drug delivery to cells expressing asialoglycoprotein receptors.

<span class="mw-page-title-main">PTPRC</span> Mammalian protein found in Homo sapiens

Protein tyrosine phosphatase, receptor type, C also known as PTPRC is an enzyme that, in humans, is encoded by the PTPRC gene. PTPRC is also known as CD45 antigen, which was originally called leukocyte common antigen (LCA).

Collectins (collagen-containing C-type lectins) are a part of the innate immune system. They form a family of collagenous Ca2+-dependent defense lectins, which are found in animals. Collectins are soluble pattern recognition receptors (PRRs). Their function is to bind to oligosaccharide structure or lipids that are on the surface of microorganisms. Like other PRRs they bind pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) of oligosaccharide origin. Binding of collectins to microorganisms may trigger elimination of microorganisms by aggregation, complement activation, opsonization, activation of phagocytosis, or inhibition of microbial growth. Other functions of collectins are modulation of inflammatory, allergic responses, adaptive immune system and clearance of apoptotic cells.

<span class="mw-page-title-main">KLRD1</span>

CD94, also known as killer cell lectin-like receptor subfamily D, member 1 (KLRD1) is a human gene.

<span class="mw-page-title-main">Langerin</span>

Langerin (CD207) is a type II transmembrane protein which is encoded by the CD207 gene in humans. It was discovered by scientists Sem Saeland and Jenny Valladeau as a main part of Birbeck granules. Langerin is C-type lectin receptor on Langerhans cells (LCs) and in mice also on dermal interstitial CD103+ dendritic cells (DC) and on resident CD8+ DC in lymph nodes.

The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).

<span class="mw-page-title-main">ICAM3</span> Mammalian protein found in Homo sapiens

Intercellular adhesion molecule 3 (ICAM3) also known as CD50, is a protein that in humans is encoded by the ICAM3 gene. The protein is constitutively expressed on the surface of leukocytes, which are also called white blood cells and are part of the immune system. ICAM3 mediates adhesion between cells by binding to specific integrin receptors. It plays an important role in the immune cell response through its facilitation of interactions between T cells and dendritic cells, which allows for T cell activation. ICAM3 also mediates the clearance of cells undergoing apoptosis by attracting and binding macrophages, a type of cell that breaks down infected or dying cells through a process known as phagocytosis, to apoptotic cells.

<span class="mw-page-title-main">CD69</span> Human lectin protein

CD69 is a human transmembrane C-Type lectin protein encoded by the CD69 gene. It is an early activation marker that is expressed in hematopoietic stem cells, T cells, and many other cell types in the immune system. It is also implicated in T cell differentiation as well as lymphocyte retention in lymphoid organs.

<span class="mw-page-title-main">Galectin-1</span> Protein-coding gene in the species Homo sapiens

Galectin-1 is a protein that in humans is encoded by the LGALS1 gene.

<span class="mw-page-title-main">CLEC7A</span> Protein-coding gene in humans

C-type lectin domain family 7 member A or Dectin-1 is a protein that in humans is encoded by the CLEC7A gene. CLEC7A is a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. The encoded glycoprotein is a small type II membrane receptor with an extracellular C-type lectin-like domain fold and a cytoplasmic domain with a partial immunoreceptor tyrosine-based activation motif. It functions as a pattern-recognition receptor for a variety of β-1,3-linked and β-1,6-linked glucans from fungi and plants, and in this way plays a role in innate immune response. Expression is found on myeloid dendritic cells, monocytes, macrophages and B cells. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region.

<span class="mw-page-title-main">HAVCR2</span> Protein-coding gene in the species Homo sapiens

Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3)gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.

<span class="mw-page-title-main">CD 205</span> Protein-coding gene in the species Homo sapiens

CD205 also called Lymphocyte antigen 75 is a protein that in humans is encoded by the LY75 gene.

<span class="mw-page-title-main">ST6GALNAC1</span> Protein-coding gene in the species Homo sapiens

Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 is an enzyme that in humans is encoded by the ST6GALNAC1 gene. This enzyme adds a N-Acetylneuraminic acid to an O-linked N-Acetylgalactosamine (GalNAc) on a peptide/proteins with an α2-6 linkage to produce the sialyl-Tn antigen. It has been shown that the enzyme prefers Thr over Ser containing GalNAc residues.

<span class="mw-page-title-main">CLEC12A</span> Protein-coding gene in humans

C-type lectin domain family 12 member A is a protein that in humans is encoded by the CLEC12A gene.

Core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase, 1, also known as C1GALT1, is an enzyme which in humans is encoded by the C1GALT1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000132514 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000000318 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Suzuki N, Yamamoto K, Toyoshima S, Osawa T, Irimura T (January 1996). "Molecular cloning and expression of cDNA encoding human macrophage C-type lectin. Its unique carbohydrate binding specificity for Tn antigen". Journal of Immunology. 156 (1): 128–135. doi: 10.4049/jimmunol.156.1.128 . PMID   8598452. S2CID   25597354.
  6. Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CH, Hatscher L, et al. (2018-04-27). "CLEC10A Is a Specific Marker for Human CD1c+ Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion". Frontiers in Immunology. 9: 744. doi: 10.3389/fimmu.2018.00744 . PMC   5934495 . PMID   29755453.
  7. 1 2 3 4 5 Hoober JK (July 2020). "ASGR1 and Its Enigmatic Relative, CLEC10A". International Journal of Molecular Sciences. 21 (14): 4818. doi: 10.3390/ijms21144818 . PMC   7404283 . PMID   32650396.
  8. Zelensky AN, Gready JE (December 2005). "The C-type lectin-like domain superfamily". The FEBS Journal. 272 (24): 6179–6217. doi:10.1111/j.1742-4658.2005.05031.x. PMID   16336259. S2CID   7084402.
  9. van Kooyk Y, Ilarregui JM, van Vliet SJ (February 2015). "Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL". Immunobiology. 220 (2): 185–192. doi: 10.1016/j.imbio.2014.10.002 . PMID   25454488. S2CID   32172457.
  10. Mortezai N, Behnken HN, Kurze AK, Ludewig P, Buck F, Meyer B, Wagener C (July 2013). "Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL)". Glycobiology. 23 (7): 844–852. doi:10.1093/glycob/cwt021. PMID   23507963.
  11. Mnich ME, van Dalen R, Gerlach D, Hendriks A, Xia G, Peschel A, et al. (October 2019). "The C-type lectin receptor MGL senses N-acetylgalactosamine on the unique Staphylococcus aureus ST395 wall teichoic acid". Cellular Microbiology. 21 (10): e13072. doi:10.1111/cmi.13072. PMC   6771913 . PMID   31219660.
  12. van Vliet SJ, van Liempt E, Saeland E, Aarnoudse CA, Appelmelk B, Irimura T, et al. (May 2005). "Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells". International Immunology. 17 (5): 661–669. doi:10.1093/intimm/dxh246. PMID   15802303.
  13. Tang-Huau TL, Gueguen P, Goudot C, Durand M, Bohec M, Baulande S, et al. (July 2018). "Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway". Nature Communications. 9 (1): 2570. Bibcode:2018NatCo...9.2570T. doi:10.1038/s41467-018-04985-0. PMC   6028641 . PMID   29967419.
  14. Kurze AK, Buhs S, Eggert D, Oliveira-Ferrer L, Müller V, Niendorf A, et al. (August 2019). "Immature O-glycans recognized by the macrophage glycoreceptor CLEC10A (MGL) are induced by 4-hydroxy-tamoxifen, oxidative stress and DNA-damage in breast cancer cells". Cell Communication and Signaling. 17 (1): 107. doi: 10.1186/s12964-019-0420-9 . PMC   6712659 . PMID   31455323.
  15. Eggink LL, Roby KF, Cote R, Kenneth Hoober J (April 2018). "An innovative immunotherapeutic strategy for ovarian cancer: CLEC10A and glycomimetic peptides". Journal for Immunotherapy of Cancer. 6 (1): 28. doi: 10.1186/s40425-018-0339-5 . PMC   5905120 . PMID   29665849.
  16. Qin Y, Wang L, Zhang L, Li J, Liao L, Huang L, et al. (2021). "Immunological role and prognostic potential of CLEC10A in pan-cancer". American Journal of Translational Research. 14 (5): 2844–2860. doi:10.2139/ssrn.3932103. PMC   9185031 . PMID   35702069. S2CID   242193292.
  17. Dusoswa SA, Verhoeff J, Abels E, Méndez-Huergo SP, Croci DO, Kuijper LH, et al. (February 2020). "Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin". Proceedings of the National Academy of Sciences of the United States of America. 117 (7): 3693–3703. Bibcode:2020PNAS..117.3693D. doi: 10.1073/pnas.1907921117 . PMC   7035608 . PMID   32019882.
  18. Jondle CN, Sharma A, Simonson TJ, Larson B, Mishra BB, Sharma J (April 2016). "Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia". Journal of Immunology. 196 (7): 3088–3096. doi:10.4049/jimmunol.1501790. PMC   4936400 . PMID   26912318.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.