PDCD1LG2

Last updated
PDCD1LG2
Identifiers
Aliases PDCD1LG2 , B7DC, Btdc, CD273, PD-L2, PDCD1L2, PDL2, bA574F11.2, programmed cell death 1 ligand 2
External IDs OMIM: 605723 MGI: 1930125 HomoloGene: 10973 GeneCards: PDCD1LG2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_025239

NM_021396

RefSeq (protein)

NP_079515

NP_067371

Location (UCSC) Chr 9: 5.51 – 5.57 Mb Chr 19: 29.39 – 29.45 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Programmed cell death 1 ligand 2 (also known as PD-L2, B7-DC) is a protein that in humans is encoded by the PDCD1LG2 gene. [5] [6] PDCD1LG2 has also been designated as CD273 (cluster of differentiation 273). PDCD1LG2 is an immune checkpoint receptor ligand which plays a role in negative regulation of the adaptive immune response. [5] [7] PD-L2 is one of two known ligands for Programmed cell death protein 1 (PD-1). [5]

Contents

Structure

X-ray crystallography structure of high affinity mutant hPDL2-hPD1 complex (1.986 A) reported in Tang and Kim, PNAS 2019. hPD-1: green/blue, hPD-L2: red/orange/yellow Highaffinity pdl2 pd1 tang kim.gif
X-ray crystallography structure of high affinity mutant hPDL2-hPD1 complex (1.986 Å) reported in Tang and Kim, PNAS 2019. hPD-1: green/blue, hPD-L2: red/orange/yellow

PD-L2 is a cell surface receptor belonging to the B7 protein family. [8] It consists of both an immunoglobulin-like variable domain and an immunoglobulin-like constant domain in the extracellular region, a transmembrane domain, and a cytoplasmic domain. [8] PD-L2 shares considerable sequence homology with other B7 proteins, [9] but it does not contain the putative binding sequence for CD28/CTLA4, namely SQDXXXELY or XXXYXXRT. [9]

The crystal structure of murine PD-L2 bound to murine PD-1 has been determined. [10] as well as the structure of the hPD-L2/mutant hPD-1 complex. [11]

Expression

Profile

PD-L2 is primarily expressed on professional antigen presenting cells including dendritic cells (DCs) and macrophages. [12] Others have shown PD-L2 expression in certain T helper cell subsets and cytotoxic T cells. [13] [14] PD-L2 protein is widely expressed in many healthy tissues including the GI tract tissues, skeletal muscles, tonsils, and pancreas. [15] Additionally, PD-L2 has moderate to high expression in triple-negative breast cancer and gastric cancer and low expression in renal cell carcinoma. [16] PD-L2 mRNA is widely expressed and not enriched in any particular tissue. [15]

Regulation

Interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GMCSF) both upregulate PD-L2 expression in DCs in vitro . [12] IFN-α, IFN-β, and IFN-γ induce moderate upregulation of PD-L2 expression. [12]

Function

PD-L2 binds to its receptor PD-1 with dissociation constant Kd of 11.3 nM. [17] Binding to PD-1 can activate pathways inhibiting TCR/BCR-mediated immune cell activation [12] (for a more detailed discussion see PD-1 signaling). PD-L2 plays an important role in immune tolerance and autoimmunity. [18] Both PD-L1 and PD-L2 can inhibit T cell proliferation and inflammatory cytokine production. [17] Blocking PD-L2 has been shown to exacerbate experimental autoimmune encephalomyelitis. [18] Unlike PD-L1, PD-L2 has been shown activate the immune system. PD-L2 triggers IL-12 production in murine dendritic cells leading to T cell activation. [17] Others have shown that treatment with PD-L2 Ig led to T helper cell proliferation. [18]

Clinical significance

PD-L2, PD-L1, and PD-1 expressions are important in the immune response to certain cancers. Due to their role in suppressing the adaptive immune system, efforts have been made to block PD-1 and PD-L1, resulting in FDA approved inhibitors for both (see pembrolizumab, nivolumab, atezolizumab). There are still no FDA approved inhibitors for PD-L2 as of 2019. [19]

The direct role of PD-L2 in cancer progression and immune-tumor microenvironment regulation is not as well studied as the role of PD-L1. [16] In mouse cell cultures, PD-L2 expression on tumor cells suppressed cytotoxic T cell-mediated immune responses. [20]

Indirectly, PD-L2 may have utility as a biomarker or prognostic indicator. PD-L2 expression has been shown to predict response to PD-1 blockade with pembrolizumab independently of PD-L1 expression. [16] However, PD-L2 does not putatively predict outcome in cancer, with some studies suggesting it predicts negative prognoses [21] [22] [23] and other studies suggesting it predicts positive prognoses. [24]

Related Research Articles

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">Antigen-presenting cell</span> Cell that displays antigen bound by MHC proteins on its surface

An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T-cells.

<span class="mw-page-title-main">Cytotoxic T-lymphocyte associated protein 4</span> Mammalian protein found in humans

Cytotoxic T-lymphocyte associated protein 4, (CTLA-4) also known as CD152, is a protein receptor that functions as an immune checkpoint and downregulates immune responses. CTLA-4 is constitutively expressed in regulatory T cells but only upregulated in conventional T cells after activation – a phenomenon which is particularly notable in cancers. It acts as an "off" switch when bound to CD80 or CD86 on the surface of antigen-presenting cells. It is encoded by the gene CTLA4 in humans.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">CD80</span> Mammalian protein found in Homo sapiens

The Cluster of differentiation 80 is a B7, type I membrane protein in the immunoglobulin superfamily, with an extracellular immunoglobulin constant-like domain and a variable-like domain required for receptor binding. It is closely related to CD86, another B7 protein (B7-2), and often works in tandem. Both CD80 and CD86 interact with costimulatory receptors CD28, CTLA-4 (CD152) and the p75 neurotrophin receptor.

<span class="mw-page-title-main">CD86</span> Mammalian protein found in Homo sapiens

Cluster of Differentiation 86 is a protein constitutively expressed on dendritic cells, Langerhans cells, macrophages, B-cells, and on other antigen-presenting cells. Along with CD80, CD86 provides costimulatory signals necessary for T cell activation and survival. Depending on the ligand bound, CD86 can signal for self-regulation and cell-cell association, or for attenuation of regulation and cell-cell disassociation.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology (immuno-oncology) is an interdisciplinary branch of biology and a sub-discipline of immunology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

<span class="mw-page-title-main">C-C chemokine receptor type 7</span> Protein-coding gene in the species Homo sapiens

C-C chemokine receptor type 7 is a protein that in humans is encoded by the CCR7 gene. Two ligands have been identified for this receptor: the chemokines ligand 19 (CCL19/ELC) and ligand 21 (CCL21). The ligands have similar affinity for the receptor, though CCL19 has been shown to induce internalisation of CCR7 and desensitisation of the cell to CCL19/CCL21 signals. CCR7 is a transmembrane protein with 7 transmembrane domains, which is coupled with heterotrimeric G proteins, which transduce the signal downstream through various signalling cascades. The main function of the receptor is to guide immune cells to immune organs by detecting specific chemokines, which these tissues secrete.

<span class="mw-page-title-main">PD-L1</span> Mammalian protein found in Homo sapiens

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.

<span class="mw-page-title-main">Programmed cell death protein 1</span> Mammalian protein found in Homo sapiens

Programmed cell death protein 1(PD-1),. PD-1 is a protein encoded in humans by the PDCD1 gene. PD-1 is a cell surface receptor on T cells and B cells that has a role in regulating the immune system's response to the cells of the human body by down-regulating the immune system and promoting self-tolerance by suppressing T cell inflammatory activity. This prevents autoimmune diseases, but it can also prevent the immune system from killing cancer cells.

<span class="mw-page-title-main">ICOSLG</span> Protein-coding gene in the species Homo sapiens

ICOS ligand is a protein that in humans is encoded by the ICOSLG gene located at chromosome 21. ICOSLG has also been designated as CD275.

<span class="mw-page-title-main">NCR3</span> Mammalian protein found in Homo sapiens

Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 and as NKp30. NCR3 belongs to the family of NCR membrane receptors together with NCR1 (NKp46) and NCR2 (NKp44).

<span class="mw-page-title-main">Lymphocyte-activation gene 3</span>

Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biologic effects on T cell function. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.

<span class="mw-page-title-main">HAVCR2</span> Protein-coding gene in the species Homo sapiens

Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3)gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.

<span class="mw-page-title-main">MARCO</span> Protein-coding gene in the species Homo sapiens

Macrophage receptor with collagenous structure (MARCO) is a protein that in humans is encoded by the MARCO gene. MARCO is a class A scavenger receptor that is found on particular subsets of macrophages. Scavenger receptors are pattern recognition receptors (PRRs) found most commonly on immune cells. Their defining feature is that they bind to polyanions and modified forms of a type of cholesterol called low-density lipoprotein (LDL). MARCO is able to bind and phagocytose these ligands and pathogen-associated molecular patterns (PAMPs), leading to the clearance of pathogens and cell signaling events that lead to inflammation. As part of the innate immune system, MARCO clears, or scavenges, pathogens, which leads to inflammatory responses. The scavenger receptor cysteine-rich (SRCR) domain at the end of the extracellular side of MARCO binds ligands to activate the subsequent immune responses. MARCO expression on macrophages has been associated with tumor development and also with Alzheimer's disease, via decreased responses of cells when ligands bind to MARCO.

<span class="mw-page-title-main">Immune checkpoint</span> Regulators of the immune system

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.

<span class="mw-page-title-main">PD-1 and PD-L1 inhibitors</span> Class of anticancer drugs

PD-1 inhibitors and PD-L1 inhibitors are a group of checkpoint inhibitor anticancer drugs that block the activity of PD-1 and PDL1 immune checkpoint proteins present on the surface of cells. Immune checkpoint inhibitors are emerging as a front-line treatment for several types of cancer.

<span class="mw-page-title-main">VISTA (protein)</span> Protein-coding gene in the species Homo sapiens

V-domain Ig suppressor of T cell activation (VISTA) is a type I transmembrane protein that functions as an immune checkpoint and is encoded by the C10orf54 gene.

Tolerogenic dendritic cells are heterogenous pool of dendritic cells with immuno-suppressive properties, priming immune system into tolerogenic state against various antigens. These tolerogenic effects are mostly mediated through regulation of T cells such as inducing T cell anergy, T cell apoptosis and induction of Tregs. Tol-DCs also affect local micro-environment toward tolerogenic state by producing anti-inflammatory cytokines.

<span class="mw-page-title-main">CD28 family receptor</span> Group of regulatory cell surface receptors

CD28 family receptors are a group of regulatory cell surface receptors expressed on immune cells. The CD28 family in turn is a subgroup of the immunoglobulin superfamily.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000197646 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000016498 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. (March 2001). "PD-L2 is a second ligand for PD-1 and inhibits T cell activation". Nature Immunology. 2 (3): 261–8. doi:10.1038/85330. PMID   11224527. S2CID   27659586.
  6. "Entrez Gene: PDCD1LG2 programmed cell death 1 ligand 2".
  7. McDermott DF, Atkins MB (October 2013). "PD-1 as a potential target in cancer therapy". Cancer Medicine. 2 (5): 662–73. doi:10.1002/cam4.106. PMC   3892798 . PMID   24403232.
  8. 1 2 Chen L (May 2004). "Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity". Nature Reviews. Immunology. 4 (5): 336–47. doi:10.1038/nri1349. PMID   15122199. S2CID   33548210.
  9. 1 2 Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. (April 2001). "B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells". The Journal of Experimental Medicine. 193 (7): 839–46. doi:10.1084/jem.193.7.839. PMC   2193370 . PMID   11283156.
  10. Lázár-Molnár E, Yan Q, Cao E, Ramagopal U, Nathenson SG, Almo SC (July 2008). "Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2". Proceedings of the National Academy of Sciences of the United States of America. 105 (30): 10483–8. doi: 10.1073/pnas.0804453105 . PMC   2492495 . PMID   18641123.
  11. Tang S, Kim PS (December 2019). "A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery". Proceedings of the National Academy of Sciences of the United States of America. 116 (49): 24500–24506. Bibcode:2019PNAS..11624500T. doi: 10.1073/pnas.1916916116 . PMC   6900541 . PMID   31727844.
  12. 1 2 3 4 Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (March 2007). "The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection". Nature Immunology. 8 (3): 239–45. doi:10.1038/ni1443. PMID   17304234. S2CID   8749576.
  13. Messal N, Serriari NE, Pastor S, Nunès JA, Olive D (September 2011). "PD-L2 is expressed on activated human T cells and regulates their function" (PDF). Molecular Immunology. 48 (15–16): 2214–9. doi:10.1016/j.molimm.2011.06.436. PMID   21752471. S2CID   33134166.
  14. Lesterhuis WJ, Steer H, Lake RA (October 2011). "PD-L2 is predominantly expressed by Th2 cells". Molecular Immunology. 49 (1–2): 1–3. doi:10.1016/j.molimm.2011.09.014. PMID   22000002.
  15. 1 2 "Tissue expression of PDCD1LG2". The Human Protein Atlas. Retrieved 2020-03-05.
  16. 1 2 3 Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. (June 2017). "PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer". Clinical Cancer Research. 23 (12): 3158–3167. doi: 10.1158/1078-0432.CCR-16-1761 . PMID   28619999.
  17. 1 2 3 Ghiotto M, Gauthier L, Serriari N, Pastor S, Truneh A, Nunès JA, Olive D (August 2010). "PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1". International Immunology. 22 (8): 651–60. doi:10.1093/intimm/dxq049. PMC   3168865 . PMID   20587542.
  18. 1 2 3 Zhang Y, Chung Y, Bishop C, Daugherty B, Chute H, Holst P, et al. (August 2006). "Regulation of T cell activation and tolerance by PDL2". Proceedings of the National Academy of Sciences of the United States of America. 103 (31): 11695–700. Bibcode:2006PNAS..10311695Z. doi: 10.1073/pnas.0601347103 . PMC   1544232 . PMID   16864790.
  19. "Search of: PDCD1LG2 - List Results - ClinicalTrials.gov". clinicaltrials.gov. Retrieved 2020-03-04.
  20. Tanegashima T, Togashi Y, Azuma K, Kawahara A, Ideguchi K, Sugiyama D, et al. (August 2019). "Immune Suppression by PD-L2 against Spontaneous and Treatment-Related Antitumor Immunity". Clinical Cancer Research. 25 (15): 4808–4819. doi: 10.1158/1078-0432.CCR-18-3991 . hdl: 2324/4475014 . PMID   31076547.
  21. Wang ZL, Li GZ, Wang QW, Bao ZS, Wang Z, Zhang CB, Jiang T (2019). "PD-L2 expression is correlated with the molecular and clinical features of glioma, and acts as an unfavorable prognostic factor". Oncoimmunology. 8 (2): e1541535. doi:10.1080/2162402X.2018.1541535. PMC   6343813 . PMID   30713802.
  22. Yang H, Zhou X, Sun L, Mao Y (2019). "Correlation Between PD-L2 Expression and Clinical Outcome in Solid Cancer Patients: A Meta-Analysis". Frontiers in Oncology. 9: 47. doi: 10.3389/fonc.2019.00047 . PMC   6413700 . PMID   30891423.
  23. Tobin JW, Keane C, Gunawardana J, Mollee P, Birch S, Hoang T, et al. (2019). "Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration". Journal of Clinical Oncology. 37 (34): 3300–3309. doi: 10.1200/JCO.18.02365 . PMC   6784528 . PMID   31570492.
  24. Obeid JM, Erdag G, Smolkin ME, Deacon DH, Patterson JW, Chen L, et al. (2016). "PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: Correlation with tumor-infiltrating immune cells and clinical outcome". Oncoimmunology. 5 (11): e1235107. doi:10.1080/2162402X.2016.1235107. PMC   5139635 . PMID   27999753.

Further reading