CD74

Last updated
CD74
Protein CD74 PDB 1icf.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CD74 , DHLAG, HLADG, II, Ia-GAMMA, CD74 molecule, p33, CLIP
External IDs OMIM: 142790 MGI: 96534 HomoloGene: 3209 GeneCards: CD74
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004355
NM_001025158
NM_001025159
NM_001364083
NM_001364084

NM_001042605
NM_010545

RefSeq (protein)

NP_001020329
NP_001020330
NP_004346
NP_001351012
NP_001351013

NP_001036070
NP_034675

Location (UCSC) Chr 5: 150.4 – 150.41 Mb Chr 18: 60.94 – 60.95 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

HLA class II histocompatibility antigen gamma chain also known as HLA-DR antigens-associated invariant chain or CD74 (Cluster of Differentiation 74), is a protein that in humans is encoded by the CD74 gene. [5] [6] The invariant chain (Abbreviated Ii) is a polypeptide which plays a critical role in antigen presentation. It is involved in the formation and transport of MHC class II peptide complexes for the generation of CD4+ T cell responses. [7] [8] The cell surface form of the invariant chain is known as CD74. CD74 is a cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF). [9]

Function

The nascent MHC class II protein in the rough endoplasmic reticulum (RER) binds a segment of the invariant chain (Ii; a trimer) in order to shape the peptide-binding groove and prevent the formation of a closed conformation.

The invariant chain also facilitates the export of MHC class II from the RER in a vesicle. The signal for endosomal targeting resides in the cytoplasmic tail of the invariant chain. This fuses with a late endosome containing the endocytosed antigen proteins (from the exogenous pathway). Binding to Ii ensures that no antigen peptides from the endogenous pathway meant for MHC class I molecules accidentally bind to the groove of MHC class II molecules. [10] The Ii is then cleaved by cathepsin S (cathepsin L in cortical thymic epithelial cells), leaving only a small fragment called CLIP remaining bound to the groove of MHC class II molecules. The rest of the Ii is degraded. [10] CLIP blocks peptide-binding until HLA-DM interacts with MHC II, releasing CLIP and allowing other peptides to bind. In some cases, CLIP dissociates without any further molecular interactions, but in other cases the binding to the MHC is more stable. [11]

The stable MHC class II + antigen complex is then presented on the cell surface. Without CLIP, MHC class II aggregates disassemble and/or denature in the endosomes, and proper antigen presentation is impaired. [12]

Clinical significance

Vaccine adjuvant

The Ii molecule—fused with a viral vector to a conserved region of the Hepatitis C virus (HCV) genome—has been tested as an adjuvant for a HCV vaccine in a cohort of 17 healthy human volunteers. This experimental vaccine was well-tolerated, and those who received the adjuvanted vaccine had stronger anti-HCV immune responses (enhanced magnitude, breadth and proliferative capacity of anti-HCV-specific T-cells) compared with volunteers who received the vaccine that lacked the Ii adjuvant. [13]

The Ii molecule might also prove to be useful as an adjuvant for a future vaccine for the SARS-CoV-2 virus, if this enhancing effect can be demonstrated to apply to the appropriate antigen(s). [14]

Cancer

Found on a number of cancer cell types. Possible cancer therapy target. See milatuzumab.

Axial spondyloarthritis

Autoantibodies against CD74 have been identified as promising biomarkers in the early diagnosis of the autoimmune disease called axial spondyloarthritis (non-radiographic axial spondyloarthritis and radiographic axial spondyloarthritis / Ankylosing spondylitis). [15]

Interactions

CD74 receptor interacts with the cytokine Macrophage migration inhibitory factor (MIF) to mediate some of its functions. [16] [17] [18] [19] [20] [21]

Recovery functions

Role of CD74 receptor in tissue injury and wound repair Role of CD74 receptor in tissue injury and wound repair.png
Role of CD74 receptor in tissue injury and wound repair

CD74 receptor is expressed on the surface of different cell types. Interaction between MIF cytokine and its cell membrane receptor CD74 activates pro-survival and proliferative pathways that protect against injury and promote healing in different parts of the body. [22]

History

The invariant chain was first described by Patricia P. Jones, Donal B. Murphy, Derek Hewgill, and Hugh McDevitt at Stanford. [23] The nomenclature "Ii" comes from an Ix-based naming system (I for Immune) that predates the naming of the Major Histocompatibility Complex.

See also

Related Research Articles

<span class="mw-page-title-main">Major histocompatibility complex</span> Cell surface proteins, part of the acquired immune system

The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are called MHC molecules.

<span class="mw-page-title-main">Antigen-presenting cell</span> Cell that displays antigen bound by MHC proteins on its surface

An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T-cells.

<span class="mw-page-title-main">MHC class I</span> Protein of the immune system

MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on platelets, but not on red blood cells. Their function is to display peptide fragments of proteins from within the cell to cytotoxic T cells; this will trigger an immediate response from the immune system against a particular non-self antigen displayed with the help of an MHC class I protein. Because MHC class I molecules present peptides derived from cytosolic proteins, the pathway of MHC class I presentation is often called cytosolic or endogenous pathway.

<span class="mw-page-title-main">HLA-DR</span> Subclass of HLA-D antigens that consist of alpha and beta chains

HLA-DR is an MHC class II cell surface receptor encoded by the human leukocyte antigen complex on chromosome 6 region 6p21.31. The complex of HLA-DR and peptide, generally between 9 and 30 amino acids in length, constitutes a ligand for the T-cell receptor (TCR). HLA were originally defined as cell surface antigens that mediate graft-versus-host disease. Identification of these antigens has led to greater success and longevity in organ transplant.

<span class="mw-page-title-main">HLA-DRA</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DR alpha chain is a protein that in humans is encoded by the HLA-DRA gene. HLA-DRA encodes the alpha subunit of HLA-DR. Unlike the alpha chains of other Human MHC class II molecules, the alpha subunit is practically invariable. However it can pair with, in any individual, the beta chain from 3 different DR beta loci, DRB1, and two of any DRB3, DRB4, or DRB5 alleles. Thus there is the potential that any given individual can form 4 different HLA-DR isoforms.

<span class="mw-page-title-main">Antigen presentation</span> Vital immune process that is essential for T cell immune response triggering

Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment, now bound to the major histocompatibility complex (MHC), is transported to the surface of the cell, a process known as presentation, where it can be recognized by a T-cell receptor. If there has been an infection with viruses or bacteria, the cell will present an endogenous or exogenous peptide fragment derived from the antigen by MHC molecules. There are two types of MHC molecules which differ in the behaviour of the antigens: MHC class I molecules (MHC-I) bind peptides from the cell cytosol, while peptides generated in the endocytic vesicles after internalisation are bound to MHC class II (MHC-II). Cellular membranes separate these two cellular environments - intracellular and extracellular. Each T cell can only recognize tens to hundreds of copies of a unique sequence of a single peptide among thousands of other peptides presented on the same cell, because an MHC molecule in one cell can bind to quite a large range of peptides. Predicting which antigens will be presented to the immune system by a certain MHC/HLA type is difficult, but the technology involved is improving.

<span class="mw-page-title-main">MHC class II</span> Protein of the immune system

MHC Class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cells, mononuclear phagocytes, some endothelial cells, thymic epithelial cells, and B cells. These cells are important in initiating immune responses.

<span class="mw-page-title-main">CLIP (protein)</span>

CLIP or Class II-associated invariant chain peptide is the part of the invariant chain (Ii) that binds to the peptide binding groove of MHC class II and remains there until the MHC receptor is fully assembled. CLIP is one of the most prevalent self peptides found in the thymic cortex of most antigen-presenting cells. The purpose of CLIP is to prevent the degradation of MHC II dimers before antigenic peptides bind, and to prevent autoimmunity.

<span class="mw-page-title-main">HLA-E</span> Protein-coding gene in the species Homo sapiens

HLA class I histocompatibility antigen, alpha chain E (HLA-E) also known as MHC class I antigen E is a protein that in humans is encoded by the HLA-E gene. The human HLA-E is a non-classical MHC class I molecule that is characterized by a limited polymorphism and a lower cell surface expression than its classical paralogues. The functional homolog in mice is called Qa-1b, officially known as H2-T23.

<span class="mw-page-title-main">Minor histocompatibility antigen</span>

Minor histocompatibility antigen are peptides presented on the cellular surface of donated organs that are known to give an immunological response in some organ transplants. They cause problems of rejection less frequently than those of the major histocompatibility complex (MHC). Minor histocompatibility antigens (MiHAs) are diverse, short segments of proteins and are referred to as peptides. These peptides are normally around 9-12 amino acids in length and are bound to both the major histocompatibility complex (MHC) class I and class II proteins. Peptide sequences can differ among individuals and these differences arise from SNPs in the coding region of genes, gene deletions, frameshift mutations, or insertions. About a third of the characterized MiHAs come from the Y chromosome. Prior to becoming a short peptide sequence, the proteins expressed by these polymorphic or diverse genes need to be digested in the proteasome into shorter peptides. These endogenous or self peptides are then transported into the endoplasmic reticulum with a peptide transporter pump called TAP where they encounter and bind to the MHC class I molecule. This contrasts with MHC class II molecules's antigens which are peptides derived from phagocytosis/endocytosis and molecular degradation of non-self entities' proteins, usually by antigen-presenting cells. MiHA antigens are either ubiquitously expressed in most tissue like skin and intestines or restrictively expressed in the immune cells.

A tetramer assay is a procedure that uses tetrameric proteins to detect and quantify T cells that are specific for a given antigen within a blood sample. The tetramers used in the assay are made up of four major histocompatibility complex (MHC) molecules, which are found on the surface of most cells in the body. MHC molecules present peptides to T-cells as a way to communicate the presence of viruses, bacteria, cancerous mutations, or other antigens in a cell. If a T-cell's receptor matches the peptide being presented by an MHC molecule, an immune response is triggered. Thus, MHC tetramers that are bioengineered to present a specific peptide can be used to find T-cells with receptors that match that peptide. The tetramers are labeled with a fluorophore, allowing tetramer-bound T-cells to be analyzed with flow cytometry. Quantification and sorting of T-cells by flow cytometry enables researchers to investigate immune response to viral infection and vaccine administration as well as functionality of antigen-specific T-cells. Generally, if a person's immune system has encountered a pathogen, the individual will possess T cells with specificity toward some peptide on that pathogen. Hence, if a tetramer stain specific for a pathogenic peptide results in a positive signal, this may indicate that the person's immune system has encountered and built a response to that pathogen.

<span class="mw-page-title-main">HLA-DM</span>

HLA-DM is an intracellular protein involved in the mechanism of antigen presentation on antigen presenting cells (APCs) of the immune system. It does this by assisting in peptide loading of major histocompatibility complex (MHC) class II membrane-bound proteins. HLA-DM is encoded by the genes HLA-DMA and HLA-DMB.

<span class="mw-page-title-main">HLA-G</span>

HLA-G histocompatibility antigen, class I, G, also known as human leukocyte antigen G (HLA-G), is a protein that in humans is encoded by the HLA-G gene.

<span class="mw-page-title-main">Major histocompatibility complex, class II, DQ alpha 1</span> Protein-coding gene in the species Homo sapiens

Major histocompatibility complex, class II, DQ alpha 1, also known as HLA-DQA1, is a human gene present on short arm of chromosome 6 (6p21.3) and also denotes the genetic locus which contains this gene. The protein encoded by this gene is one of two proteins that are required to form the DQ heterodimer, a cell surface receptor essential to the function of the immune system.

<span class="mw-page-title-main">HLA-DRB3</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DRB3-1 beta chain is a protein that in humans is encoded by the HLA-DRB3 gene.

<span class="mw-page-title-main">HLA-F</span> Protein-coding gene in the species Homo sapiens

HLA class I histocompatibility antigen, alpha chain F is a protein that in humans is encoded by the HLA-F gene. It is an empty intracellular molecule that encodes a non-classical heavy chain anchored to the membrane and forming a heterodimer with a β-2 microglobulin light chain. It belongs to the HLA class I heavy chain paralogues that separate from most of the HLA heavy chains. HLA-F is localized in the endoplasmic reticulum and Golgi apparatus, and is also unique in the sense that it exhibits few polymorphisms in the human population relative to the other HLA genes; however, there have been found different isoforms from numerous transcript variants found for the HLA-F gene. Its pathways include INF-gamma signaling and CDK-mediated phosphorylation and removal of the Saccharomycescerevisiae Cdc6 protein, which is crucial for functional DNA replication.

<span class="mw-page-title-main">HLA-DMB</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DM beta chain is a protein that in humans is encoded by the HLA-DMB gene.

<span class="mw-page-title-main">HLA-DMA</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DM alpha chain is a protein that in humans is encoded by the HLA-DMA gene.

<span class="mw-page-title-main">HLA-DOB</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DO beta chain is a protein that in humans is encoded by the HLA-DOB gene.

<span class="mw-page-title-main">LILRA3</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily A member 3 (LILR-A3) also known as CD85 antigen-like family member E (CD85e), immunoglobulin-like transcript 6 (ILT-6), and leukocyte immunoglobulin-like receptor 4 (LIR-4) is a protein that in humans is encoded by the LILRA3 gene located within the leukocyte receptor complex on chromosome 19q13.4. Unlike many of its family, LILRA3 lacks a transmembrane domain. The function of LILRA3 is currently unknown; however, it is highly homologous to other LILR genes, and can bind human leukocyte antigen (HLA) class I. Therefore, if secreted, the LILRA3 might impair interactions of membrane-bound LILRs with their HLA ligands, thus modulating immune reactions and influencing susceptibility to disease.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000019582 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024610 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Claesson L, Larhammar D, Rask L, Peterson PA (December 1983). "cDNA clone for the human invariant gamma chain of class II histocompatibility antigens and its implications for the protein structure". Proceedings of the National Academy of Sciences of the United States of America. 80 (24): 7395–7399. Bibcode:1983PNAS...80.7395C. doi: 10.1073/pnas.80.24.7395 . PMC   389957 . PMID   6324166.
  6. Kudo J, Chao LY, Narni F, Saunders GF (December 1985). "Structure of the human gene encoding the invariant gamma-chain of class II histocompatibility antigens". Nucleic Acids Research. 13 (24): 8827–8841. doi:10.1093/nar/13.24.8827. PMC   318954 . PMID   3001652.
  7. "UniProtKB - P04233 (HG2A_HUMAN)". The UniProt Knowledgebase. The UniProt Consortium. 2020. Retrieved Aug 10, 2020.
  8. Cresswell P (1994). "Assembly, transport, and function of MHC class II molecules". Annual Review of Immunology. 12: 259–293. doi:10.1146/annurev.iy.12.040194.001355. PMID   8011283.
  9. Farr L, Ghosh S, Moonah S (2020). "Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair". Frontiers in Immunology. 11: 1273. doi: 10.3389/fimmu.2020.01273 . PMC   7325688 . PMID   32655566.
  10. 1 2 Owen JA, Punt J, Stranford SA, Jones PP, Kuby J (2013). Kuby immunology (7th ed.). New York: W.H. Freeman. ISBN   978-1-4641-1991-0. OCLC   820117219.
  11. Schulze MS, Wucherpfennig KW (February 2012). "The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway". Current Opinion in Immunology. 24 (1): 105–111. doi:10.1016/j.coi.2011.11.004. PMC   3288754 . PMID   22138314.
  12. Vogt AB, Kropshofer H (April 1999). "HLA-DM - an endosomal and lysosomal chaperone for the immune system". Trends in Biochemical Sciences. 24 (4): 150–154. doi:10.1016/s0968-0004(99)01364-x. PMID   10322421.
  13. Esposito I, Cicconi P, D'Alise AM, Brown A, Esposito M, Swadling L, et al. (June 2020). "MHC class II invariant chain-adjuvanted viral vectored vaccines enhances T cell responses in humans". Science Translational Medicine. 12 (548): eaaz7715. doi:10.1126/scitranslmed.aaz7715. PMC   7610808 . PMID   32554708. S2CID   219722045.
  14. Larkin M (June 24, 2020). "Adjuvanted viral-vectored vaccine promising against hepatitis C in early trial". Reuters Health News. GI Health Foundation. Retrieved Aug 10, 2020.
  15. Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, et al. (June 2014). "Autoantibodies against CD74 in spondyloarthritis". Annals of the Rheumatic Diseases. 73 (6): 1211–1214. doi:10.1136/annrheumdis-2012-202208. PMID   23687263. S2CID   22939188.
  16. Ghosh S, Padalia J, Ngobeni R, Abendroth J, Farr L, Shirley DA, et al. (March 2020). "Targeting Parasite-Produced Macrophage Migration Inhibitory Factor as an Antivirulence Strategy With Antibiotic-Antibody Combination to Reduce Tissue Damage". The Journal of Infectious Diseases. 221 (7): 1185–1193. doi: 10.1093/infdis/jiz579 . PMC   7325720 . PMID   31677380.
  17. Shan ZX, Lin QX, Deng CY, Tan HH, Kuang SJ, Xiao DZ, et al. (December 2009). "[Identification of the interactions between the truncated fragments of macrophage migration inhibitory factor and CD74 using a yeast two-hybrid system]". Nan Fang Yi Ke da Xue Xue Bao = Journal of Southern Medical University (in Chinese). 29 (12): 2383–6, 2390. PMID   20034881.
  18. Wang F, Shen X, Guo X, Peng Y, Liu Y, Xu S, Yang J (February 2010). "Spinal macrophage migration inhibitory factor contributes to the pathogenesis of inflammatory hyperalgesia in rats". Pain. 148 (2): 275–283. doi:10.1016/j.pain.2009.11.011. PMID   20005040. S2CID   38141283.
  19. Dobson SE, Augustijn KD, Brannigan JA, Schnick C, Janse CJ, Dodson EJ, et al. (December 2009). "The crystal structures of macrophage migration inhibitory factor from Plasmodium falciparum and Plasmodium berghei". Protein Science. 18 (12): 2578–2591. doi:10.1002/pro.263. PMC   2798171 . PMID   19827093.
  20. Piette C, Deprez M, Roger T, Noël A, Foidart JM, Munaut C (November 2009). "The dexamethasone-induced inhibition of proliferation, migration, and invasion in glioma cell lines is antagonized by macrophage migration inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors". The Journal of Biological Chemistry. 284 (47): 32483–32492. doi: 10.1074/jbc.M109.014589 . PMC   2781663 . PMID   19759012.
  21. Verjans E, Noetzel E, Bektas N, Schütz AK, Lue H, Lennartz B, et al. (July 2009). "Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer". BMC Cancer. 9: 230. doi:10.1186/1471-2407-9-230. PMC   2716369 . PMID   19602265.
  22. Farr L, Ghosh S, Moonah S (2020). "Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair". Frontiers in Immunology. 11: 1273. doi: 10.3389/fimmu.2020.01273 . PMC   7325688 . PMID   32655566.
  23. Jones PP, Murphy DB, Hewgill D, McDevitt HO (January 1979). "Detection of a common polypeptide chain in I--A and I--E sub-region immunoprecipitates". Molecular Immunology. 16 (1): 51–60. doi:10.1016/0161-5890(79)90027-0. PMID   376435.

Further reading