Putative T-cell surface glycoprotein CD8 | |
---|---|
Identifiers | |
Symbol | CD8 |
Membranome | 29 |
CD8a molecule | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | CD8A | ||||||
Alt. symbols | CD8 | ||||||
NCBI gene | 925 | ||||||
HGNC | 1706 | ||||||
OMIM | 186910 | ||||||
RefSeq | NM_001768 | ||||||
UniProt | P01732 | ||||||
Other data | |||||||
Locus | Chr. 2 p12 | ||||||
|
CD8b molecule | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | CD8B | ||||||
Alt. symbols | CD8B1 | ||||||
NCBI gene | 926 | ||||||
HGNC | 1707 | ||||||
OMIM | 186730 | ||||||
RefSeq | NM_172099 | ||||||
UniProt | P10966 | ||||||
Other data | |||||||
Locus | Chr. 2 p12 | ||||||
|
CD8 (cluster of differentiation 8) is a transmembrane glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). Along with the TCR, the CD8 co-receptor plays a role in T cell signaling and aiding with cytotoxic T cell-antigen interactions.
Like the TCR, CD8 binds to a major histocompatibility complex (MHC) molecule, but is specific for the MHC class I protein. [1] However, while the TCR interacts with the antigen-binding region of MHC-I, the CD8 molecule binds to the α3 domain, a non-variant region of MHC-I located away from the antigen-binding site.
There are two isoforms of the protein, alpha (CD8A) and beta (CD8B), each encoded by a different gene. In humans, both genes are located on chromosome 2 in position 2p12. CD8A is composed of 235 amino acid residues while CD8B consists of 210 residues, these two molecules share only 25 conserved residues.
Both CD8 chains are type I membrane proteins, each with three main regions: an N-terminal extracellular ectodomain (residues 23–192 in CD8A and 23–170 in CD8B), a single transmembrane helix (residues 193–219 in CD8A and 171–191 in CD8B), and a small cytoplasmic region (residues 220–235 in CD8A and 192–210 in CD8B). The ectodomain of CD8 comprises a single immunoglobulin variable (IgV)-like domain and a highly dynamic proline-rich stalk region that connects the IgV domain to the transmembrane helix.
Active form of CD8 is dimer, three different dimers have been detected CD8αα, CD8αβ, and CD8ββ [2]
CD8 chains contain several essential cysteine residues critical for their structural and functional roles. A disulfide bond between two cysteines in the IgV domain (C45-C115 in CD8A; C41-C116 in CD8B) is a defining feature of the immunoglobulin fold, stabilizing the two beta sheets that form this domain. Additionally, C192, the last residue of the stalk region in CD8A, is critical for the dimerization, since it forms an inter-subunit disulfide bond. In CD8αα dimers, it pairs with C192 of another CD8A monomer, while in CD8αβ dimers, it pairs with C168 of CD8B.
Cysteine residues in the transmembrane helix (TMH) of CD8A also play an important role in dimerization. Studies have shown that a chimeric CD8A containing the TMH of another protein, such as the interleukin-2 receptor, exhibits a significantly reduced dimeric form. [3]
The cytosolic portion of CD8A (but not CD8B) contains two cysteine residues, Cys215 and Cys217, which are integral to the Lck recognition site. Together with a Zn²⁺ ion and two cysteines (Cys20 and Cys23) from Lck, these residues help position the kinase near the TCR to phosphorylate the ITAM regions of CD3 subunits.
Furthermore, other cysteine residues in the cytoplasmic regions of both CD8A and CD8B can undergo palmitoylation. Palmitoylation is crucial for targeting proteins to specialized membrane regions, including lipid rafts and immunological synapses. For CD8, palmitoylation facilitates the recruitment of Lck bound to CD8 to the immunological synapse, enhancing proximity to the ITAM regions of CD3 and promoting efficient TCR signaling.
The CD8 co-receptor is predominantly expressed on the surface of cytotoxic T cells, but can also be found on natural killer cells, cortical thymocytes, and dendritic cells. The CD8 molecule is a marker for cytotoxic T cell population. It is expressed in T cell lymphoblastic lymphoma and hypo-pigmented mycosis fungoides. [4]
The first crystal structure of the deglycosylated IgV domain of the CD8A molecule was published by Leahy, DJ, Axel, R, and Hendrickson, WA in 1992. [5] Since then, crystal structures have been determined for over 20 different complexes containing CD8 molecules. [2] The extracellular immunoglobulin-like domain of CD8 monomers adopts a typical IgV fold, composed of two beta sheets (strands ABED and A'G'GFCC'C''). Hydrophobic interaction between residues at the interface of these two β-sheets together with a disulfide bond linking cysteine residues in strands B and F, create a stable domain. Loops between strands B and C (CDR1), C' and C'' (CDR2) and F and G (CDR3) mediate contact with the MHC-I. Comparison of the CD8αα and CD8αβ dimers demonstrates the overall similarity of the structure, though the dimer interface of CD8αα is a little bit larger compared with CD8αβ. Moreover, the interaction with MHC-I is very similar for CD8αα and CD8αβ. CDR loops of both subunits of CD8 dimer interact with a flexible region at the α3 domain of an MHC-I molecule (residues 223 and 230). Importance of this interaction was confirmed by the mutational study [6]
The interaction of the extracellular IgV-like domains of CD8 with the α3 portion of the Class I MHC molecule increases affinity for the T cell receptor of the cytotoxic T cell and the target cell such that they bound closely together during antigen-specific activation. In addition, CD8 co-receptor also plays a role in T cell signaling. The cytoplasmic tail of the CD8 co-receptor bind Lck (lymphocyte-specific protein tyrosine kinase) via common Cys4-Zn finger. Once the T cell receptor binds its specific antigen Lck phosphorylates the cytoplasmic CD3 and ζ-chains of the TCR complex which initiates a cascade of phosphorylation eventually leading to activation of transcription factors like NFAT, NF-κB, and AP-1 which affect the expression of certain genes. [7]
A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens (such as viruses or bacteria), or cells that are damaged in other ways.
The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils. CD4+ cells are mature Th cells that express the surface protein CD4. Genetic variation in regulatory elements expressed by CD4+ cells determines susceptibility to a broad class of autoimmune diseases.
The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are called MHC molecules.
In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.
The T-cell receptor (TCR) is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerate: that is, many TCRs recognize the same antigen peptide and many antigen peptides are recognized by the same TCR.
In immunology, an Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.
Tyrosin-protein kinase Lck is a 56 kDa protein that is found inside lymphocytes and encoded in the human by the LCK gene. The Lck is a member of Src kinase family (SFK) and is important for the activation of T-cell receptor (TCR) signaling in both naive T cells and effector T cells. The role of Lck is less prominent in the activation or in the maintenance of memory CD8 T cells in comparison to CD4 T cells. In addition, the constitutive activity of the mouse Lck homolog varies among memory T cell subsets. It seems that in mice, in the effector memory T cell (TEM) population, more than 50% of Lck is present in a constitutively active conformation, whereas less than 20% of Lck is present as active form in central memory T cells. These differences are due to differential regulation by SH2 domain–containing phosphatase-1 (Shp-1) and C-terminal Src kinase.
CD28 is a protein expressed on T cells that provides essential co-stimulatory signals required for T cell activation and survival. When T cells are stimulated through CD28 in conjunction with the T-cell receptor (TCR), it enhances the production of various interleukins, particularly IL-6. CD28 serves as a receptor for CD80 (B7.1) and CD86 (B7.2), proteins found on antigen-presenting cells (APCs).
CD3 is a protein complex and T cell co-receptor that is involved in activating both the cytotoxic T cell and T helper cells. It is composed of four distinct chains. In mammals, the complex contains a CD3γ chain, a CD3δ chain, and two CD3ε chains. These chains associate with the T-cell receptor (TCR) and the CD3-zeta (ζ-chain) to generate an activation signal in T lymphocytes. The TCR, CD3-zeta, and the other CD3 molecules together constitute the TCR complex.
MHC-restricted antigen recognition, or MHC restriction, refers to the fact that a T cell can interact with a self-major histocompatibility complex molecule and a foreign peptide bound to it, but will only respond to the antigen when it is bound to a particular MHC molecule.
CD5 is a cluster of differentiation expressed on the surface of T cells and in a subset of murine B cells known as B-1a. The expression of this receptor in human B cells has been a controversial topic and to date there is no consensus regarding the role of this receptor as a marker of human B cells. B-1 cells have limited diversity of their B-cell receptor due to their lack of the enzyme terminal deoxynucleotidyl transferase (TdT) and are potentially self-reactive. CD5 serves to mitigate activating signals from the BCR so that the B-1 cells can only be activated by very strong stimuli and not by normal tissue proteins. CD5 was used as a T-cell marker until monoclonal antibodies against CD3 were developed.
The Linker for activation of T cells, also known as linker of activated T cells or LAT, is a protein involved in the T-cell antigen receptor signal transduction pathway which in humans is encoded by the LAT gene. Alternative splicing results in multiple transcript variants encoding different isoforms.
Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 and as NKp30. NCR3 belongs to the family of NCR membrane receptors together with NCR1 (NKp46) and NCR2 (NKp44).
Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biological effects on T cell function but overall has an immune inhibitory effect. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.
Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3) gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.
Cluster of differentiation CD79A also known as B-cell antigen receptor complex-associated protein alpha chain and MB-1 membrane glycoprotein, is a protein that in humans is encoded by the CD79A gene.
T-cell surface glycoprotein CD8 alpha chain, is a protein encoded by CD8A gene.
T-cell surface glycoprotein CD3 delta chain is a protein that in humans is encoded by the CD3D gene.
The following outline is provided as an overview of and topical guide to immunology:
Kinetic-segregation is a model proposed for the mechanism of T-cell receptor (TCR) triggering. It offers an explanation for how TCR binding to its ligand triggers T-cell activation, based on size-sensitivity for the molecules involved. Simon J. Davis and Anton van der Merwe, University of Oxford, proposed this model in 1996. According to the model, TCR signalling is initiated by segregation of phosphatases with large extracellular domains from the TCR complex when binding to its ligand, allowing small kinases to phosphorylate intracellular domains of the TCR without inhibition. Its might also be applicable to other receptors of the Non-catalytic tyrosine-phosphorylated receptors family such as CD28.