Hookworm vaccine

Last updated
Hookworm Hookworms.JPG
Hookworm

Hookworm vaccine is a vaccine against hookworm. [1] No effective vaccine for the disease in humans has yet been developed. Hookworms, parasitic nematodes transmitted in soil, infect approximately 700 million humans, particularly in tropical regions of the world where endemic hookworms include Ancylostoma duodenale and Necator americanus . Hookworms feed on blood and those infected with hookworms may develop chronic anaemia and malnutrition. [1] [2] Helminth infection can be effectively treated with benzimidazole drugs (such as mebendazole or albendazole), and efforts led by the World Health Organization have focused on one to three yearly de-worming doses in schools because hookworm infections with the heaviest intensities are most common in school-age children. [3] However, these drugs only eliminate existing adult parasites and re-infection can occur soon after treatment. School-based de-worming efforts do not treat adults or pre-school children and concerns exist about drug resistance developing in hookworms against the commonly used treatments, thus a vaccine against hookworm disease is sought to provide more permanent resistance to infection. [3] [4]

Contents

Hookworm infection is considered a neglected disease as it disproportionately affects poorer localities and has received little attention from pharmaceutical companies. [5]

Vaccine targets

Hookworm infections in humans can last for several years, and re-infection can occur very shortly after treatment, suggesting that hookworms effectively evade—and may interrupt or modulate—the host immune system. [1] Successful hookworm vaccines have been developed for several animal species. [1] On the basis of prior work, human vaccine development has targeted antigens from both the larval and adult stages of the hookworm life cycle; a combined vaccine for humans that would provide more complete protection. [1] Current targets of larval proteins attenuate larval migration through host tissue; targets of adult proteins have been demonstrated to block enzymes vital to hookworm feeding.[ citation needed ]

The "ASP" (ancylostoma secreted protein) proteins are cysteine-rich secretory proteins. They are promising vaccine candidates based on previous vaccine studies in sheep, guinea pigs, cattle, and mice, which have demonstrated inhibition of hookworm larval migration. Furthermore, epidemiologic studies determined that high titers of circulating antibodies against ASPs are associated with lower hookworm burdens in residents of Hainan Province, China, and Minas Gerais, Brazil. [6] The function of Na-ASP-2 ( Q7Z1H1 ) is not currently known (though it may function as a chemotaxin mimic [1] ), but it is known to be released during parasite entry into the host. It may have some function in the transition from the larval environment stage of the hookworm life-cycle to an adult parasitic existence and tissue migration. [2] [7] [8] [9] [10]

The "APR" proteins are aspartic proteases. Ac-APR-1 and Na-APR-1 [11] specifically participate in the hookworm's digestion of hemoglobin from its blood meal [4] and are present in the adult stage of the hookworm life cycle. [1] [4] Animals immunized against Ac-APR-1 exhibited a reduction in worm burden, a reduction in hemoglobin loss, and a dramatic reduction in worm fecundity. [2]

The "GST" proteins are glutathione S-transferases. Na-GST-1 ( D3U1A5 ) plays a role in the worm's digestion of hemoglobin; specifically, it serves to protect the worm from heme molecules released by digestion. [12]

Research

Examples of antigenic targets of hookworm vaccines currently in clinical trials include Na-ASP-2, Ac-APR-1, Na-APR-1, and Na-GST-1. [12]

In a clinical trial a vaccine containing recombinant Na-ASP-2 with Aluminium hydroxide (Alhydrogel) as an adjuvant was found to increase Th2 helper cells and IgE. Both the Th2 helper cells and IgE antibody are important players in recognition and immunoregulation against parasites. The vaccine containing recombinant Na-ASP-2 resulted in significantly decreased risk of a hookworm infection. [7]

In 2014, Na-GST-1 with Alhydrogel adjuvant completed a successful phase 1 clinical trial in Brazil. In 2017, it completed a successful phase 1 trial in the US. [12]

Funding

Hookworm life cycle Hookworm LifeCycle.gif
Hookworm life cycle

Research funding to develop hookworm vaccines has come from the Human Hookworm Vaccine Initiative, [13] a program of the Sabin Vaccine Institute and collaborations with George Washington University, the Oswaldo Cruz Foundation, the Chinese Institute of Parasitic Diseases, the Queensland Institute of Medical Research, and the London School of Hygiene and Tropical Medicine. [2] [14] [15] Funding for hookworm vaccine research efforts also includes funds from the Bill & Melinda Gates Foundation totaling in excess of $53 million, [5] and additional support from the Rockefeller Foundation, Doctors Without Borders, National Institute of Allergy and Infectious Diseases, and the March of Dimes Birth Defects Foundation. [5] [15]

The government of Brazil, where hookworm is still endemic in some poorer areas, has promised to manufacture a vaccine if one can be proven effective. [16]

Related Research Articles

<span class="mw-page-title-main">Trichuriasis</span> Infection by Trichuris trichiura (whipworm)

Trichuriasis, also known as whipworm infection, is an infection by the parasitic worm Trichuris trichiura (whipworm). If infection is only with a few worms, there are often no symptoms. In those who are infected with many worms, there may be abdominal pain, fatigue and diarrhea. The diarrhea sometimes contains blood. Infections in children may cause poor intellectual and physical development. Low red blood cell levels may occur due to loss of blood.

<span class="mw-page-title-main">Helminthiasis</span> Any macroparasitic disease caused by helminths

Helminthiasis, also known as worm infection, is any macroparasitic disease of humans and other animals in which a part of the body is infected with parasitic worms, known as helminths. There are numerous species of these parasites, which are broadly classified into tapeworms, flukes, and roundworms. They often live in the gastrointestinal tract of their hosts, but they may also burrow into other organs, where they induce physiological damage.

<span class="mw-page-title-main">Hookworm infection</span> Disease caused by intestinal parasites

Hookworm infection is an infection by a type of intestinal parasite known as a hookworm. Initially, itching and a rash may occur at the site of infection. Those only affected by a few worms may show no symptoms. Those infected by many worms may experience abdominal pain, diarrhea, weight loss, and tiredness. The mental and physical development of children may be affected. Anemia may result.

<i>Necator americanus</i> Species of hookworm

Necator americanus is a species of hookworm commonly known as the New World hookworm. Like other hookworms, it is a member of the phylum Nematoda. It is an obligatory parasitic nematode that lives in the small intestine of human hosts. Necatoriasis—a type of helminthiasis—is the term for the condition of being host to an infestation of a species of Necator. Since N. americanus and Ancylostoma duodenale are the two species of hookworms that most commonly infest humans, they are usually dealt with under the collective heading of "hookworm infection". They differ most obviously in geographical distribution, structure of mouthparts, and relative size.

<i>Ascaris</i> Genus of roundworms

Ascaris is a nematode genus of parasitic worms known as the "small intestinal roundworms", which is a type of parasitic worm. One species, Ascaris lumbricoides, affects humans and causes the disease ascariasis. Another species, Ascaris suum, typically infects pigs. Other ascarid genera infect other animals, such as Parascaris equorum, the equine roundworm, and Toxocara and Toxascaris, which infect dogs and cats.

The soil-transmitted helminths are a group of intestinal parasites belonging to the phylum Nematoda that are transmitted primarily through contaminated soil. They are so called because they have a direct life cycle which requires no intermediate hosts or vectors, and the parasitic infection occurs through faecal contamination of soil, foodstuffs and water supplies. The adult forms are essentially parasites of humans, causing soil-transmitted helminthiasis (STH), but also infect domesticated mammals. The juveniles are the infective forms and they undergo tissue-migratory stages during which they invade vital organs such as lungs and liver. Thus the disease manifestations can be both local and systemic. The geohelminths together present an enormous infection burden on humanity, amounting to 135,000 deaths every year, and persistent infection of more than two billion people.

Necatoriasis is the condition of infection by Necator hookworms, such as Necator americanus. This hookworm infection is a type of helminthiasis (infection) which is a type of neglected tropical disease.

<span class="mw-page-title-main">Peter Hotez</span> American scientist, pediatrician, and advocate

Peter Jay Hotez is an American scientist, pediatrician, and advocate in the fields of global health, vaccinology, and neglected tropical disease control. He serves as founding dean of the National School of Tropical Medicine, Professor of Pediatrics and Molecular Virology & Microbiology at Baylor College of Medicine, where he is also Director of the Texas Children's Hospital Center for Vaccine Development and Endowed Chair in Tropical Pediatrics, and University Professor of Biology at Baylor College of Medicine.

A Cytomegalovirus vaccine is a vaccine to prevent cytomegalovirus (CMV) infection or curb virus re-activation in persons already infected. Challenges in developing a vaccine include adeptness of CMV in evading the immune system and limited animal models. As of 2018 no such vaccine exists, although a number of vaccine candidates are under investigation. They include recombinant protein, live attenuated, DNA and other vaccines.

<span class="mw-page-title-main">Schistosomiasis vaccine</span>

A Schistosomiasis vaccine is a vaccine against Schistosomiasis, a parasitic disease caused by several species of fluke of the genus Schistosoma. No effective vaccine for the disease exists yet. Schistosomiasis affects over 200 million people worldwide, mainly in rural agricultural and peri-urban areas of the third world, and approximately 10% suffer severe health complications from the infection. While chemotherapeutic drugs, such as praziquantel, oxamniquine and metrifonate both no longer on the market, are currently considered safe and effective for the treatment of schistosomiasis, reinfection occurs frequently following drug treatment, thus a vaccine is sought to provide long-term treatment. Additionally, experimental vaccination efforts have been successful in animal models of schistosomiasis.

<i>Ancylostoma caninum</i> Species of roundworm

Ancylostoma caninum is a species of nematode known as a hookworm, which principally infects the small intestine of dogs. The result of A. caninum infection ranges from asymptomatic cases to death of the dog; better nourishment, increasing age, prior A. caninum exposure, or vaccination are all linked to improved survival. Other hosts include carnivores such as wolves, foxes, and cats, with a small number of cases having been reported in humans.

A subunit vaccine is a vaccine that contains purified parts of the pathogen that are antigenic, or necessary to elicit a protective immune response. Subunit vaccine can be made from dissembled viral particles in cell culture or recombinant DNA expression, in which case it is a recombinant subunit vaccine.

Peptide-based synthetic vaccines are subunit vaccines made from peptides. The peptides mimic the epitopes of the antigen that triggers direct or potent immune responses. Peptide vaccines can not only induce protection against infectious pathogens and non-infectious diseases but also be utilized as therapeutic cancer vaccines, where peptides from tumor-associated antigens are used to induce an effective anti-tumor T-cell response.

<span class="mw-page-title-main">Soil-transmitted helminthiasis</span> Roundworm infection contracted from contaminated soil

Soil-transmitted helminthiasis is a type of worm infection (helminthiasis) caused by different species of roundworms. It is caused specifically by those worms which are transmitted through soil contaminated with faecal matter and are therefore called soil-transmitted helminths. Three types of soil-transmitted helminthiasis can be distinguished: ascariasis, hookworm infection and whipworm infection. These three types of infection are therefore caused by the large roundworm A. lumbricoides, the hookworms Necator americanus or Ancylostoma duodenale and by the whipworm Trichuris trichiura.

Ancylostoma ceylanicum is a parasitic roundworm belonging to the genus Ancylostoma. It is a hookworm both of humans and of other mammals such as dogs, cats, and golden hamsters. It is the only zoonotic hookworm species that is able to produce symptomatic infections in humans, with the majority of cases being in Southeast Asia.

Sabin Vaccine Institute (Sabin), located in Washington, D.C., is a nonprofit organization promoting global vaccine development, availability, and use. Through its work, Sabin hopes to reduce human suffering by preventing the spread of vaccine-preventable, communicable disease in humans through herd immunity and mitigating the poverty caused by these diseases.

<span class="mw-page-title-main">Hookworm</span> Intestinal, blood-feeding, parasitic roundworms that cause types of infection known as helminthiases

Hookworms are intestinal, blood-feeding, parasitic roundworms that cause types of infection known as helminthiases. Hookworm infection is found in many parts of the world, and is common in areas with poor access to adequate water, sanitation, and hygiene. In humans, infections are caused by two main species of roundworm, belonging to the genera Ancylostoma and Necator. In other animals the main parasites are species of Ancylostoma. Hookworm is closely associated with poverty because it is most often found in impoverished areas, and its symptoms promote poverty through the educational and health effects it has on children. It is the leading cause of anemia and undernutrition in developing countries, while being one of the most commonly occurring diseases among poor people. Hookworm thrives in areas where rainfall is sufficient and keeps the soil from drying out, and where temperatures are higher, making rural, coastal areas prime conditions for the parasite to breed.

<span class="mw-page-title-main">CoVLP</span> COVID-19 vaccine candidate produced in a plant

CoVLP was a COVID-19 vaccine developed by Medicago in Canada and GlaxoSmithKline (GSK). The product and Medicago, Inc. were owned by Mitsubishi who terminated the company and program in February 2023 due to high international market competition for COVID-19 vaccines.

Vaccine-associated enhanced respiratory disease (VAERD), or simply enhanced respiratory disease (ERD), is an adverse event where an exacerbated course of respiratory disease occurs with higher incidence in the vaccinated population than in the control group. It is a barrier against vaccine development that can lead to its failure.

<span class="mw-page-title-main">SCB-2019</span> Vaccine candidate against COVID-19

SCB-2019 is a protein subunit COVID-19 vaccine developed by Clover Biopharmaceuticals using an adjuvant from Dynavax technologies. Positive results of Phase I trials for the vaccine were published in The Lancet and the vaccine completed enrollment of 29,000 participants in Phase II/III trials in July 2021. In September 2021, SCB-2019 announced Phase III results showing 67% efficacy against all cases of COVID-19 and 79% efficacy against all cases of the Delta variant. Additionally, the vaccine was 84% effective against moderate cases and 100% effective against hospitalization.

References

  1. 1 2 3 4 5 6 7 Diemert DJ, Bethony JM, Hotez PJ (January 2008). "Hookworm vaccines". Clin. Infect. Dis. 46 (2): 282–8. doi: 10.1086/524070 . PMID   18171264.
  2. 1 2 3 4 Devaney E (October 2005). "The End of the Line for Hookworm? An Update on Vaccine Development". PLOS Med. 2 (10): e327. doi: 10.1371/journal.pmed.0020327 . PMC   1240053 . PMID   16187734. View on Wikipedia
  3. 1 2 Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Buss P (March 2005). "Hookworm: "The Great Infection of Mankind"". PLOS Med. 2 (3): e67. doi: 10.1371/journal.pmed.0020067 . PMC   1069663 . PMID   15783256.
  4. 1 2 3 Loukas A, Bethony JM, Mendez S, et al. (October 2005). "Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasite Load and Blood Loss after Hookworm Infection in Dogs". PLOS Med. 2 (10): e295. doi: 10.1371/journal.pmed.0020295 . PMC   1240050 . PMID   16231975.
  5. 1 2 3 In Brazil, Field Trials To Treat World's Poor, Washington Post , October 11, 2006
  6. Hotez PJ, Zhan B, Bethony JM, et al. (September 2003). "Progress in the development of a recombinant vaccine for human hookworm disease: the Human Hookworm Vaccine Initiative". Int. J. Parasitol. 33 (11): 1245–58. doi:10.1016/S0020-7519(03)00158-9. PMID   13678639. S2CID   1741159.
  7. 1 2 Diemert, David J.; Pinto, Antonio G.; Freire, Janaina; Jariwala, Amar; Santiago, Helton; Hamilton, Robert G.; Periago, Maria Victoria; Loukas, Alex; Tribolet, Leon (2012). "Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: Implications for the development of vaccines against helminths". Journal of Allergy and Clinical Immunology. 130 (1): 169–176.e6. doi: 10.1016/j.jaci.2012.04.027 . PMID   22633322.
  8. Fujiwara RT, Bethony J, Bueno LL, et al. (2005). "Immunogenicity of the hookworm Na-ASP-2 vaccine candidate: characterization of humoral and cellular responses after vaccination in the Sprague Dawley rat". Hum Vaccin. 1 (3): 123–8. doi:10.4161/hv.1.3.1924. PMID   17012856. S2CID   1605830.
  9. Bethony JM, Simon G, Diemert DJ, et al. (May 2008). "Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults". Vaccine. 26 (19): 2408–17. doi:10.1016/j.vaccine.2008.02.049. PMID   18396361.
  10. Goud GN, Bottazzi ME, Zhan B, et al. (September 2005). "Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials". Vaccine. 23 (39): 4754–64. doi:10.1016/j.vaccine.2005.04.040. PMID   16054275.
  11. Pearson, Mark S.; Pickering, Darren A.; Tribolet, Leon; Cooper, Leanne; Mulvenna, Jason; Oliveira, Luciana M.; Bethony, Jeffrey M.; Hotez, Peter J.; Loukas, Alex (15 May 2010). "Neutralizing Antibodies to the Hookworm Hemoglobinase Na -APR-1: Implications for a Multivalent Vaccine against Hookworm Infection and Schistosomiasis". The Journal of Infectious Diseases. 201 (10): 1561–1569. doi:10.1086/651953. PMID   20367477.
  12. 1 2 3 Diemert, David J.; Freire, Janaína; Valente, Vanderson; Fraga, Carlos Geraldo; Talles, Frederico; Grahek, Shannon; Campbell, Doreen; Jariwala, Amar; Periago, Maria Victoria; Enk, Martin; Gazzinelli, Maria Flávia; Bottazzi, Maria Elena; Hamilton, Robert; Brelsford, Jill; Yakovleva, Anna; Li, Guangzhao; Peng, Jin; Correa-Oliveira, Rodrigo; Hotez, Peter; Bethony, Jeffrey (2 May 2017). "Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults". PLOS Neglected Tropical Diseases. 11 (5): e0005574. doi: 10.1371/journal.pntd.0005574 . PMC   5441635 . PMID   28464026.
  13. Bottazzi ME, Brown AS (December 2008). "Model for product development of vaccines against neglected tropical diseases: a vaccine against human hookworm". Expert Rev Vaccines. 7 (10): 1481–92. doi:10.1586/14760584.7.10.1481. PMID   19053205. S2CID   32681982.
  14. Human Hookworm Vaccine Initiative Overview, Sabin Vaccine Institute
  15. 1 2 World Health Organization, Initiative for Vaccine Research, Hookworm disease
  16. "In Brazil, a New Effort to Wipe Out Hookworm". NPR . 2005-10-29. Retrieved 2011-08-28.