Mebendazole

Last updated

Mebendazole
Mebendazole.svg
Clinical data
Trade names Vermox, [1] Ovex, others
Other namesMBZ
AHFS/Drugs.com Monograph
MedlinePlus a682315
License data
Pregnancy
category
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • AU: S2 (Pharmacy medicine)/ S5 and S6 for treatment of animals
  • CA: ℞-only / and OTC for treatment of animals [3]
  • UK: POM (Prescription only)/ P [4]
  • US: ℞-only
Pharmacokinetic data
Bioavailability 2–10%
Protein binding 95%
Metabolism Extensive liver
Elimination half-life 3–6 hours
Excretion Feces, urine (5–10%)
Identifiers
  • Methyl (5-benzoyl-1H-benzimidazol-2-yl)carbamate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.046.017 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C16H13N3O3
Molar mass 295.298 g·mol−1
3D model (JSmol)
Melting point 288.5 °C (551.3 °F)
  • COC(=O)Nc3nc2ccc(C(=O)c1ccccc1)cc2[nH]3
  • InChI=1S/C16H13N3O3/c1-22-16(21)19-15-17-12-8-7-11(9-13(12)18-15)14(20)10-5-3-2-4-6-10/h2-9H,1H3,(H2,17,18,19,21) Yes check.svgY
  • Key:OPXLLQIJSORQAM-UHFFFAOYSA-N Yes check.svgY
   (verify)

Mebendazole (MBZ), sold under the brand name Vermox among others, is a medication used to treat a number of parasitic worm infestations. [5] This includes ascariasis, pinworm infection, hookworm infections, guinea worm infections, hydatid disease, and giardia, among others. [5] It is taken by mouth. [5]

Contents

Mebendazole is usually well tolerated. [5] Common side effects include headache, vomiting, and ringing in the ears. [5] If used at large doses it may cause bone marrow suppression. [5] It is unclear if it is safe in pregnancy. [5] [2] Mebendazole is a broad-spectrum antihelminthic agent of the benzimidazole type. [5]

Mebendazole came into use in 1971, after it was developed by Janssen Pharmaceutica in Belgium. [6] It is on the World Health Organization's List of Essential Medicines. [7] Mebendazole is available as a generic medication. [8]

Medical use

Mebendazole is a highly effective, broad-spectrum antihelmintic indicated for the treatment of nematode infestations, including roundworm, hookworm, whipworm, threadworm (pinworm), and the intestinal form of trichinosis prior to its spread into the tissues beyond the digestive tract. Other drugs are used to treat worm infections outside the digestive tract, as mebendazole is poorly absorbed into the bloodstream. [9] Mebendazole is used alone in those with mild to moderate infestations. It kills parasites relatively slowly, and in those with very heavy infestations, it can cause some parasites to migrate out of the digestive system, leading to appendicitis, bile duct problems, or intestinal perforation. To avoid this, heavily infested patients may be treated with piperazine, either before or instead of mebendazole. Piperazine paralyses the parasites, causing them to pass in the feces. [10] It is also used rarely in the treatment of cystic echinococcosis, also known as hydatid disease. Evidence for effectiveness for this disease, however, is poor. [11]

Mebendazole and other benzimidazole antithelmetics are active against both larval and adult stages of nematodes, and in the cases of roundworm and whipworm, kill the eggs, as well. Paralysis and death of the parasites occurs slowly, and elimination in the feces may require several days. [9]

Special populations

Mebendazole has been shown to cause ill effects in pregnancy in animal models, and no adequate studies of its effects in human pregnancy have been conducted. [2] Whether it can be passed by breastfeeding is unknown. [12] [2]

Adverse effects

Mebendazole sometimes causes diarrhea, abdominal pain, and elevated liver enzymes. In rare cases, it has been associated with a dangerously low white blood cell count, low platelet count, and hair loss, [12] [13] with a risk of agranulocytosis in rare cases.

Drug interactions

Carbamazepine and phenytoin lower serum levels of mebendazole. Cimetidine does not appreciably raise serum mebendazole (in contrast to the similar drug albendazole), consistent with its poor systemic absorption. [14] [15]

Stevens–Johnson syndrome and the more severe toxic epidermal necrolysis can occur when mebendazole is combined with high doses of metronidazole. [16]

Mechanism

Mebendazole works by selectively inhibiting the synthesis of microtubules via binding to the colchicine binding site of β-tubulin, thereby blocking polymerisation of tubulin dimers in intestinal cells of parasites. [17] Disruption of cytoplasmic microtubules leads to blocking the uptake of glucose and other nutrients, resulting in the gradual immobilization and eventual death of the helminths. [9]

Poor absorption in the digestive tract makes mebendazole an efficient drug for treating intestinal parasitic infections with limited adverse effects. However mebendazole has an impact on mammalian cells, mostly by inhibiting polymeration of tubulin dimers, thereby disrupting essential microtubule structures such as mitotic spindle. [18] Disassembly of the mitotic spindle then leads to apoptosis mediated via dephosphorylation of Bcl-2 which allows pro-apoptotic protein Bax to dimerize and initiate programmed cell death. [19]

Society and culture

Availability

Mebendazole is available as a generic medication. [8] Mebendazole is distributed in international markets by Johnson and Johnson and a number of generic manufacturers. [20]

Economics

In the United States, mebendazole is sometimes sold at about 200 times the price of the same medication in other countries. [21] [22] [23]

Research

Several studies show mebendazole exhibits potent antitumor properties. mebendazole significantly inhibited cancer cell growth, migration, and metastatic formation of adrenocortical carcinoma, both in vitro and in vivo . [24] Treatment of lung cancer cell lines with mebendazole caused mitotic arrest, followed by apoptotic cell death with the feature of caspase activation and cytochrome c release. [25] Mebendazole induced a dose- and time-dependent apoptotic response in human lung cancer cell lines, [26] and apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. [27] The anti-cancer effect of mebendazole comes from preclinical studies and case reports. [28]

Related Research Articles

<span class="mw-page-title-main">Trichuriasis</span> Infection by Trichuris trichiura (whipworm)

Trichuriasis, also known as whipworm infection, is an infection by the parasitic worm Trichuris trichiura (whipworm). If infection is only with a few worms, there are often no symptoms. In those who are infected with many worms, there may be abdominal pain, fatigue and diarrhea. The diarrhea sometimes contains blood. Infections in children may cause poor intellectual and physical development. Low red blood cell levels may occur due to loss of blood.

<span class="mw-page-title-main">Ascariasis</span> Disease caused by the parasitic roundworm Ascaris lumbricoides

Ascariasis is a disease caused by the parasitic roundworm Ascaris lumbricoides. Infections have no symptoms in more than 85% of cases, especially if the number of worms is small. Symptoms increase with the number of worms present and may include shortness of breath and fever in the beginning of the disease. These may be followed by symptoms of abdominal swelling, abdominal pain, and diarrhea. Children are most commonly affected, and in this age group the infection may also cause poor weight gain, malnutrition, and learning problems.

<span class="mw-page-title-main">Tubulin</span> Superfamily of proteins that make up microtubules

Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.

<span class="mw-page-title-main">Bcl-2</span> Protein found in humans

Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. It was the first apoptosis regulator identified in any organism.

<span class="mw-page-title-main">Albendazole</span> Chemical compound

Albendazole is a broad-spectrum antihelmintic and antiprotozoal agent of the benzimidazole type. It is used for the treatment of a variety of intestinal parasite infections, including ascariasis, pinworm infection, hookworm infection, trichuriasis, strongyloidiasis, taeniasis, clonorchiasis, opisthorchiasis, cutaneous larva migrans, giardiasis, and gnathostomiasis, among other diseases.

<i>Necator americanus</i> Species of hookworm

Necator americanus is a species of hookworm commonly known as the New World hookworm. Like other hookworms, it is a member of the phylum Nematoda. It is an obligatory parasitic nematode that lives in the small intestine of human hosts. Necatoriasis—a type of helminthiasis—is the term for the condition of being host to an infestation of a species of Necator. Since N. americanus and Ancylostoma duodenale are the two species of hookworms that most commonly infest humans, they are usually dealt with under the collective heading of "hookworm infection". They differ most obviously in geographical distribution, structure of mouthparts, and relative size.

<i>Echinococcus multilocularis</i> Species of flatworm

Echinococcus multilocularis, the fox tapeworm, is a small cyclophyllid tapeworm found extensively in the northern hemisphere. E. multilocularis, along with other members of the Echinococcus genus, produce diseases known as echinococcosis. Unlike E. granulosus,E. multilocularis produces many small cysts that spread throughout the internal organs of the infected animal. The resultant disease is called Alveolar echinococcosis, and is caused by ingesting the eggs of E. multilocularis.

<span class="mw-page-title-main">Docetaxel</span> Chemotherapy medication

Docetaxel, sold under the brand name Taxotere among others, is a chemotherapy medication used to treat a number of types of cancer. This includes breast cancer, head and neck cancer, stomach cancer, prostate cancer and non-small-cell lung cancer. It may be used by itself or along with other chemotherapy medication. It is given by slow injection into a vein.

<span class="mw-page-title-main">Vinblastine</span> Chemotherapy medication

Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small-cell lung cancer, bladder cancer, brain cancer, melanoma, and testicular cancer. It is given by injection into a vein.

p53 upregulated modulator of apoptosis Protein-coding gene in the species Homo sapiens

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

<span class="mw-page-title-main">Mitotic inhibitor</span> Cell division inhibitor

A mitotic inhibitor, microtubule inhibitor, or tubulin inhibitor, is a drug that inhibits mitosis, or cell division, and is used in treating cancer, gout, and nail fungus. These drugs disrupt microtubules, which are structures that pull the chromosomes apart when a cell divides. Mitotic inhibitors are used in cancer treatment, because cancer cells are able to grow through continuous division that eventually spread through the body (metastasize). Thus, cancer cells are more sensitive to inhibition of mitosis than normal cells. Mitotic inhibitors are also used in cytogenetics, where they stop cell division at a stage where chromosomes can be easily examined.

<span class="mw-page-title-main">Ancylostomiasis</span> Medical condition

Ancylostomiasis is a hookworm disease caused by infection with Ancylostoma hookworms. The name is derived from Greek ancylos αγκύλος "crooked, bent" and stoma στόμα "mouth".

Necatoriasis is the condition of infection by Necator hookworms, such as Necator americanus. This hookworm infection is a type of helminthiasis (infection) which is a type of neglected tropical disease.

<span class="mw-page-title-main">TUBA8</span> Protein-coding gene in the species Homo sapiens

Tubulin alpha-8 chain is a protein that in humans is encoded by the TUBA8 gene.

<span class="mw-page-title-main">TUBA1C</span> Protein-coding gene in the species Homo sapiens

Tubulin alpha-1C chain is a protein that in humans is encoded by the TUBA1C gene.

<span class="mw-page-title-main">Pyrantel</span> Medication for parasitic worm infections

Pyrantel is a medication used to treat a number of parasitic worm infections. This includes ascariasis, hookworm infections, enterobiasis, trichostrongyliasis, and trichinellosis. It is taken by mouth.

<span class="mw-page-title-main">Eribulin</span> Pharmaceutical drug

Eribulin, sold under the brand name Halaven among others, is an anti-cancer medication used to treat breast cancer and liposarcoma.

<span class="mw-page-title-main">Follicular dendritic cell sarcoma</span> Dendritic cell sarcoma cancer that effects the follicular dendritic cells

Follicular dendritic cell sarcoma (FDCS) is an extremely rare neoplasm. While the existence of FDC tumors was predicted by Lennert in 1978, the tumor wasn't fully recognized as its own cancer until 1986 after characterization by Monda et al. It accounts for only 0.4% of soft tissue sarcomas, but has significant recurrent and metastatic potential and is considered an intermediate grade malignancy. The major hurdle in treating FDCS has been misdiagnosis. It is a newly characterized cancer, and because of its similarities in presentation and markers to lymphoma, both Hodgkin and Non-Hodgkin subtypes, diagnosis of FDCS can be difficult. With recent advancements in cancer biology better diagnostic assays and chemotherapeutic agents have been made to more accurately diagnose and treat FDCS.

<span class="mw-page-title-main">Pinworm infection</span> Medical condition

Pinworm infection, also known as enterobiasis, is a human parasitic disease caused by the pinworm, Enterobius vermicularis. The most common symptom is itching in the anal area. The period of time from swallowing eggs to the appearance of new eggs around the anus is 4 to 8 weeks. Some people who are infected do not have symptoms.

<span class="mw-page-title-main">Anthelmintic</span> Antiparasitic drugs that expel parasitic worms (helminths) from the body

Anthelmintics or antihelminthics are a group of antiparasitic drugs that expel parasitic worms (helminths) and other internal parasites from the body by either stunning or killing them and without causing significant damage to the host. They may also be called vermifuges or vermicides. Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals.

References

  1. Ebadi M (2008). Desk reference of clinical pharmacology (2nd ed.). Boca Raton: CRC Press. p. 403. ISBN   9781420047448. Archived from the original on 8 September 2017.
  2. 1 2 3 4 "Mebendazole Use During Pregnancy". Drugs.com. 29 July 2020. Archived from the original on 28 October 2020. Retrieved 30 September 2020.
  3. "Vermox Product information". Health Canada. 25 April 2012. Archived from the original on 13 May 2021. Retrieved 12 June 2022.
  4. "Mebendazole". Archived from the original on 23 October 2016. Retrieved 29 April 2016.
  5. 1 2 3 4 5 6 7 8 "Mebendazole". The American Society of Health-System Pharmacists. Archived from the original on 7 September 2015. Retrieved 18 August 2015.
  6. Mehlhorn, Heinz (2001). Encyclopedic reference of parasitology. 107 tables (2 ed.). Berlin [u.a.]: Springer. p. 259. ISBN   9783540668299. Archived from the original on 8 September 2017.
  7. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  8. 1 2 Hamilton, Richard J. (2012). Tarascon pocket pharmacopoeia (13 ed.). Burlington, Mass.: Jones & Bartlett Learning. p. 33. ISBN   9781449624286. Archived from the original on 8 September 2017.
  9. 1 2 3 Petri WA in Brunton LL, Chabner BA, Knollmann BC, Ed. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 12th ed., Chapter 42. McGraw-Hill, 2011 New York.
  10. Martin AR in Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 8th edition, Doerge RF, ed. J.B. Lippincott, 1982, Chapter 4
  11. "Mebendazole". drugs.com. Archived from the original on 22 February 2015. Retrieved 25 January 2015.
  12. 1 2 Finberg R, Fingeroth J in Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo, Ed. Harrison's Principles of Internal Medicine, 18th ed., McGraw-Hill, 2012, Chapter 217.
  13. Andersohn F, Konzen C, Garbe E (May 2007). "Systematic review: agranulocytosis induced by nonchemotherapy drugs". Annals of Internal Medicine. 146 (9): 657–65. doi:10.7326/0003-4819-146-9-200705010-00009. PMID   17470834. S2CID   15585536.
  14. "Drug Interactions". Medicine chest. Archived from the original on 6 February 2007. Retrieved 6 May 2008.
  15. Luder PJ, Siffert B, Witassek F, Meister F, Bircher J (1986). "Treatment of hydatid disease with high oral doses of mebendazole. Long-term follow-up of plasma mebendazole levels and drug interactions". European Journal of Clinical Pharmacology. 31 (4): 443–8. doi:10.1007/bf00613522. PMID   3816925. S2CID   41447486.
  16. Chen KT, Twu SJ, Chang HJ, Lin RS (March 2003). "Outbreak of Stevens-Johnson syndrome/toxic epidermal necrolysis associated with mebendazole and metronidazole use among Filipino laborers in Taiwan". American Journal of Public Health. 93 (3): 489–92. doi:10.2105/ajph.93.3.489. PMC   1447769 . PMID   12604501.
  17. Lacey E (April 1990). "Mode of action of benzimidazoles". Parasitology Today. 6 (4): 112–5. doi:10.1016/0169-4758(90)90227-U. PMID   15463312.
  18. De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, et al. (April 2017). "Repurposing Mebendazole as a Replacement for Vincristine for the Treatment of Brain Tumors". Molecular Medicine. 23: 50–56. doi:10.2119/molmed.2017.00011. PMC   5403762 . PMID   28386621.
  19. Blagosklonny MV, Giannakakou P, el-Deiry WS, Kingston DG, Higgs PI, Neckers L, Fojo T (January 1997). "Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death". Cancer Research. 57 (1): 130–5. PMID   8988053. Archived from the original on 10 February 2019. Retrieved 9 February 2019.
  20. Global Pharmaceutical Pricing and Reimbursement Database, zenRx Research, archived from the original on 30 June 2015, retrieved 12 June 2014
  21. "US drugmaker charges 200 times UK price for common worm pill". Financial Times. 18 December 2016.
  22. "A Pinworm Medication Is Being Tested As A Potential Anti-Cancer Drug". NPR. Retrieved 2 February 2023.
  23. Islam N, Chowdhury NA (March 1976). "Mebendazole and pyrantel pamoate as broad-spectrum anthelmintics". The Southeast Asian Journal of Tropical Medicine and Public Health (1): 81–84. PMID   1027113.
  24. Martarelli D, Pompei P, Baldi C, Mazzoni G (April 2008). "Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice". Cancer Chemotherapy and Pharmacology. 61 (5): 809–17. doi:10.1007/s00280-007-0538-0. hdl:11581/9643. PMID   17581752. S2CID   23045194.
  25. Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T (November 2002). "The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells". Molecular Cancer Therapeutics. 1 (13): 1201–9. PMID   12479701.
  26. Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA (September 2002). "Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo". Clinical Cancer Research. 8 (9): 2963–9. PMID   12231542.
  27. Doudican N, Rodriguez A, Osman I, Orlow SJ (August 2008). "Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells". Molecular Cancer Research. 6 (8): 1308–15. doi: 10.1158/1541-7786.MCR-07-2159 . PMID   18667591.
  28. Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP (2014). "Repurposing Drugs in Oncology (ReDO)-mebendazole as an anti-cancer agent". ecancermedicalscience. 8: 443. doi:10.3332/ecancer.2014.443. PMC   4096024 . PMID   25075217.